Metamath Proof Explorer


Theorem polsubclN

Description: A polarity is a closed projective subspace. (Contributed by NM, 24-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polsubcl.a A = Atoms K
polsubcl.p ˙ = 𝑃 K
polsubcl.c C = PSubCl K
Assertion polsubclN K HL X A ˙ X C

Proof

Step Hyp Ref Expression
1 polsubcl.a A = Atoms K
2 polsubcl.p ˙ = 𝑃 K
3 polsubcl.c C = PSubCl K
4 eqid lub K = lub K
5 eqid oc K = oc K
6 eqid pmap K = pmap K
7 4 5 1 6 2 polval2N K HL X A ˙ X = pmap K oc K lub K X
8 hlop K HL K OP
9 8 adantr K HL X A K OP
10 hlclat K HL K CLat
11 eqid Base K = Base K
12 11 1 atssbase A Base K
13 sstr X A A Base K X Base K
14 12 13 mpan2 X A X Base K
15 11 4 clatlubcl K CLat X Base K lub K X Base K
16 10 14 15 syl2an K HL X A lub K X Base K
17 11 5 opoccl K OP lub K X Base K oc K lub K X Base K
18 9 16 17 syl2anc K HL X A oc K lub K X Base K
19 11 6 3 pmapsubclN K HL oc K lub K X Base K pmap K oc K lub K X C
20 18 19 syldan K HL X A pmap K oc K lub K X C
21 7 20 eqeltrd K HL X A ˙ X C