Metamath Proof Explorer


Theorem prcofdiag1

Description: A constant functor pre-composed by a functor is another constant functor. (Contributed by Zhi Wang, 25-Nov-2025)

Ref Expression
Hypotheses prcofdiag.l L = C Δ func D
prcofdiag.m M = C Δ func E
prcofdiag.f φ F E Func D
prcofdiag.c φ C Cat
prcofdiag1.b B = Base C
prcofdiag1.x φ X B
Assertion prcofdiag1 φ 1 st L X func F = 1 st M X

Proof

Step Hyp Ref Expression
1 prcofdiag.l L = C Δ func D
2 prcofdiag.m M = C Δ func E
3 prcofdiag.f φ F E Func D
4 prcofdiag.c φ C Cat
5 prcofdiag1.b B = Base C
6 prcofdiag1.x φ X B
7 eqid Base E = Base E
8 3 func1st2nd φ 1 st F E Func D 2 nd F
9 8 funcrcl3 φ D Cat
10 eqid 1 st L X = 1 st L X
11 1 4 9 5 6 10 diag1cl φ 1 st L X D Func C
12 3 11 cofucl φ 1 st L X func F E Func C
13 12 func1st2nd φ 1 st 1 st L X func F E Func C 2 nd 1 st L X func F
14 7 5 13 funcf1 φ 1 st 1 st L X func F : Base E B
15 14 ffnd φ 1 st 1 st L X func F Fn Base E
16 8 funcrcl2 φ E Cat
17 eqid 1 st M X = 1 st M X
18 2 4 16 5 6 17 diag1cl φ 1 st M X E Func C
19 18 func1st2nd φ 1 st 1 st M X E Func C 2 nd 1 st M X
20 7 5 19 funcf1 φ 1 st 1 st M X : Base E B
21 20 ffnd φ 1 st 1 st M X Fn Base E
22 4 adantr φ x Base E C Cat
23 9 adantr φ x Base E D Cat
24 6 adantr φ x Base E X B
25 eqid Base D = Base D
26 7 25 8 funcf1 φ 1 st F : Base E Base D
27 26 ffvelcdmda φ x Base E 1 st F x Base D
28 1 22 23 5 24 10 25 27 diag11 φ x Base E 1 st 1 st L X 1 st F x = X
29 3 adantr φ x Base E F E Func D
30 11 adantr φ x Base E 1 st L X D Func C
31 simpr φ x Base E x Base E
32 7 29 30 31 cofu1 φ x Base E 1 st 1 st L X func F x = 1 st 1 st L X 1 st F x
33 16 adantr φ x Base E E Cat
34 2 22 33 5 24 17 7 31 diag11 φ x Base E 1 st 1 st M X x = X
35 28 32 34 3eqtr4d φ x Base E 1 st 1 st L X func F x = 1 st 1 st M X x
36 15 21 35 eqfnfvd φ 1 st 1 st L X func F = 1 st 1 st M X
37 7 13 funcfn2 φ 2 nd 1 st L X func F Fn Base E × Base E
38 7 19 funcfn2 φ 2 nd 1 st M X Fn Base E × Base E
39 eqid Hom E = Hom E
40 eqid Hom C = Hom C
41 13 adantr φ x Base E y Base E 1 st 1 st L X func F E Func C 2 nd 1 st L X func F
42 simprl φ x Base E y Base E x Base E
43 simprr φ x Base E y Base E y Base E
44 7 39 40 41 42 43 funcf2 φ x Base E y Base E x 2 nd 1 st L X func F y : x Hom E y 1 st 1 st L X func F x Hom C 1 st 1 st L X func F y
45 44 ffnd φ x Base E y Base E x 2 nd 1 st L X func F y Fn x Hom E y
46 19 adantr φ x Base E y Base E 1 st 1 st M X E Func C 2 nd 1 st M X
47 7 39 40 46 42 43 funcf2 φ x Base E y Base E x 2 nd 1 st M X y : x Hom E y 1 st 1 st M X x Hom C 1 st 1 st M X y
48 47 ffnd φ x Base E y Base E x 2 nd 1 st M X y Fn x Hom E y
49 4 ad2antrr φ x Base E y Base E f x Hom E y C Cat
50 9 ad2antrr φ x Base E y Base E f x Hom E y D Cat
51 6 ad2antrr φ x Base E y Base E f x Hom E y X B
52 8 ad2antrr φ x Base E y Base E f x Hom E y 1 st F E Func D 2 nd F
53 7 25 52 funcf1 φ x Base E y Base E f x Hom E y 1 st F : Base E Base D
54 42 adantr φ x Base E y Base E f x Hom E y x Base E
55 53 54 ffvelcdmd φ x Base E y Base E f x Hom E y 1 st F x Base D
56 eqid Hom D = Hom D
57 eqid Id C = Id C
58 43 adantr φ x Base E y Base E f x Hom E y y Base E
59 53 58 ffvelcdmd φ x Base E y Base E f x Hom E y 1 st F y Base D
60 7 39 56 52 54 58 funcf2 φ x Base E y Base E f x Hom E y x 2 nd F y : x Hom E y 1 st F x Hom D 1 st F y
61 simpr φ x Base E y Base E f x Hom E y f x Hom E y
62 60 61 ffvelcdmd φ x Base E y Base E f x Hom E y x 2 nd F y f 1 st F x Hom D 1 st F y
63 1 49 50 5 51 10 25 55 56 57 59 62 diag12 φ x Base E y Base E f x Hom E y 1 st F x 2 nd 1 st L X 1 st F y x 2 nd F y f = Id C X
64 3 ad2antrr φ x Base E y Base E f x Hom E y F E Func D
65 11 ad2antrr φ x Base E y Base E f x Hom E y 1 st L X D Func C
66 7 64 65 54 58 39 61 cofu2 φ x Base E y Base E f x Hom E y x 2 nd 1 st L X func F y f = 1 st F x 2 nd 1 st L X 1 st F y x 2 nd F y f
67 16 ad2antrr φ x Base E y Base E f x Hom E y E Cat
68 2 49 67 5 51 17 7 54 39 57 58 61 diag12 φ x Base E y Base E f x Hom E y x 2 nd 1 st M X y f = Id C X
69 63 66 68 3eqtr4d φ x Base E y Base E f x Hom E y x 2 nd 1 st L X func F y f = x 2 nd 1 st M X y f
70 45 48 69 eqfnfvd φ x Base E y Base E x 2 nd 1 st L X func F y = x 2 nd 1 st M X y
71 37 38 70 eqfnovd φ 2 nd 1 st L X func F = 2 nd 1 st M X
72 36 71 opeq12d φ 1 st 1 st L X func F 2 nd 1 st L X func F = 1 st 1 st M X 2 nd 1 st M X
73 relfunc Rel E Func C
74 1st2nd Rel E Func C 1 st L X func F E Func C 1 st L X func F = 1 st 1 st L X func F 2 nd 1 st L X func F
75 73 12 74 sylancr φ 1 st L X func F = 1 st 1 st L X func F 2 nd 1 st L X func F
76 1st2nd Rel E Func C 1 st M X E Func C 1 st M X = 1 st 1 st M X 2 nd 1 st M X
77 73 18 76 sylancr φ 1 st M X = 1 st 1 st M X 2 nd 1 st M X
78 72 75 77 3eqtr4d φ 1 st L X func F = 1 st M X