Metamath Proof Explorer


Theorem prdsinvgd2

Description: Negation of a single coordinate in a structure product. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses prdsinvgd2.y Y=S𝑠R
prdsinvgd2.i φIW
prdsinvgd2.s φSV
prdsinvgd2.r φR:IGrp
prdsinvgd2.b B=BaseY
prdsinvgd2.n N=invgY
prdsinvgd2.x φXB
prdsinvgd2.j φJI
Assertion prdsinvgd2 φNXJ=invgRJXJ

Proof

Step Hyp Ref Expression
1 prdsinvgd2.y Y=S𝑠R
2 prdsinvgd2.i φIW
3 prdsinvgd2.s φSV
4 prdsinvgd2.r φR:IGrp
5 prdsinvgd2.b B=BaseY
6 prdsinvgd2.n N=invgY
7 prdsinvgd2.x φXB
8 prdsinvgd2.j φJI
9 1 2 3 4 5 6 7 prdsinvgd φNX=xIinvgRxXx
10 9 fveq1d φNXJ=xIinvgRxXxJ
11 2fveq3 x=JinvgRx=invgRJ
12 fveq2 x=JXx=XJ
13 11 12 fveq12d x=JinvgRxXx=invgRJXJ
14 eqid xIinvgRxXx=xIinvgRxXx
15 fvex invgRJXJV
16 13 14 15 fvmpt JIxIinvgRxXxJ=invgRJXJ
17 8 16 syl φxIinvgRxXxJ=invgRJXJ
18 10 17 eqtrd φNXJ=invgRJXJ