Metamath Proof Explorer


Theorem prdsplusgcl

Description: Structure product pointwise sums are closed when the factors are monoids. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsplusgcl.y Y=S𝑠R
prdsplusgcl.b B=BaseY
prdsplusgcl.p +˙=+Y
prdsplusgcl.s φSV
prdsplusgcl.i φIW
prdsplusgcl.r φR:IMnd
prdsplusgcl.f φFB
prdsplusgcl.g φGB
Assertion prdsplusgcl φF+˙GB

Proof

Step Hyp Ref Expression
1 prdsplusgcl.y Y=S𝑠R
2 prdsplusgcl.b B=BaseY
3 prdsplusgcl.p +˙=+Y
4 prdsplusgcl.s φSV
5 prdsplusgcl.i φIW
6 prdsplusgcl.r φR:IMnd
7 prdsplusgcl.f φFB
8 prdsplusgcl.g φGB
9 6 ffnd φRFnI
10 1 2 4 5 9 7 8 3 prdsplusgval φF+˙G=xIFx+RxGx
11 6 ffvelcdmda φxIRxMnd
12 4 adantr φxISV
13 5 adantr φxIIW
14 9 adantr φxIRFnI
15 7 adantr φxIFB
16 simpr φxIxI
17 1 2 12 13 14 15 16 prdsbasprj φxIFxBaseRx
18 8 adantr φxIGB
19 1 2 12 13 14 18 16 prdsbasprj φxIGxBaseRx
20 eqid BaseRx=BaseRx
21 eqid +Rx=+Rx
22 20 21 mndcl RxMndFxBaseRxGxBaseRxFx+RxGxBaseRx
23 11 17 19 22 syl3anc φxIFx+RxGxBaseRx
24 23 ralrimiva φxIFx+RxGxBaseRx
25 1 2 4 5 9 prdsbasmpt φxIFx+RxGxBxIFx+RxGxBaseRx
26 24 25 mpbird φxIFx+RxGxB
27 10 26 eqeltrd φF+˙GB