Metamath Proof Explorer


Theorem precofval3

Description: Value of the pre-composition functor as a transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypotheses precoffunc.r R = D FuncCat E
precoffunc.b B = D Func E
precoffunc.n N = D Nat E
precoffunc.f φ F C Func D G
precoffunc.e φ E Cat
precoffunc.k φ K = g B g func F G
precoffunc.l φ L = g B , h B a g N h a F
precofval3.q Q = C FuncCat D
precofval3.o No typesetting found for |- ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) with typecode |-
precofval3.m No typesetting found for |- ( ph -> M = ( ( 1st ` .o. ) ` <. F , G >. ) ) with typecode |-
Assertion precofval3 φ K L = M

Proof

Step Hyp Ref Expression
1 precoffunc.r R = D FuncCat E
2 precoffunc.b B = D Func E
3 precoffunc.n N = D Nat E
4 precoffunc.f φ F C Func D G
5 precoffunc.e φ E Cat
6 precoffunc.k φ K = g B g func F G
7 precoffunc.l φ L = g B , h B a g N h a F
8 precofval3.q Q = C FuncCat D
9 precofval3.o Could not format ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) : No typesetting found for |- ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) with typecode |-
10 precofval3.m Could not format ( ph -> M = ( ( 1st ` .o. ) ` <. F , G >. ) ) : No typesetting found for |- ( ph -> M = ( ( 1st ` .o. ) ` <. F , G >. ) ) with typecode |-
11 2 mpteq1i g B g func F G = g D Func E g func F G
12 6 11 eqtrdi φ K = g D Func E g func F G
13 2 a1i φ B = D Func E
14 3 a1i φ N = D Nat E
15 14 oveqd φ g N h = g D Nat E h
16 relfunc Rel C Func D
17 brrelex12 Rel C Func D F C Func D G F V G V
18 16 4 17 sylancr φ F V G V
19 op1stg F V G V 1 st F G = F
20 18 19 syl φ 1 st F G = F
21 20 eqcomd φ F = 1 st F G
22 21 coeq2d φ a F = a 1 st F G
23 15 22 mpteq12dv φ a g N h a F = a g D Nat E h a 1 st F G
24 13 13 23 mpoeq123dv φ g B , h B a g N h a F = g D Func E , h D Func E a g D Nat E h a 1 st F G
25 7 24 eqtrd φ L = g D Func E , h D Func E a g D Nat E h a 1 st F G
26 12 25 opeq12d φ K L = g D Func E g func F G g D Func E , h D Func E a g D Nat E h a 1 st F G
27 df-br F C Func D G F G C Func D
28 4 27 sylib φ F G C Func D
29 8 1 9 28 5 10 precofval2 φ M = g D Func E g func F G g D Func E , h D Func E a g D Nat E h a 1 st F G
30 26 29 eqtr4d φ K L = M