Metamath Proof Explorer


Theorem precsexlem6

Description: Lemma for surreal reciprocal. Show that L is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025)

Ref Expression
Hypotheses precsexlem.1 No typesetting found for |- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |-
precsexlem.2 L=1stF
precsexlem.3 R=2ndF
Assertion precsexlem6 IωJωIJLILJ

Proof

Step Hyp Ref Expression
1 precsexlem.1 Could not format F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) : No typesetting found for |- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |-
2 precsexlem.2 L=1stF
3 precsexlem.3 R=2ndF
4 nnawordex IωJωIJkωI+𝑜k=J
5 oveq2 k=I+𝑜k=I+𝑜
6 5 fveq2d k=LI+𝑜k=LI+𝑜
7 6 sseq2d k=LILI+𝑜kLILI+𝑜
8 oveq2 k=jI+𝑜k=I+𝑜j
9 8 fveq2d k=jLI+𝑜k=LI+𝑜j
10 9 sseq2d k=jLILI+𝑜kLILI+𝑜j
11 oveq2 k=sucjI+𝑜k=I+𝑜sucj
12 11 fveq2d k=sucjLI+𝑜k=LI+𝑜sucj
13 12 sseq2d k=sucjLILI+𝑜kLILI+𝑜sucj
14 nna0 IωI+𝑜=I
15 14 fveq2d IωLI+𝑜=LI
16 15 eqimsscd IωLILI+𝑜
17 nnacl IωjωI+𝑜jω
18 ssun1 Could not format ( L ` ( I +o j ) ) C_ ( ( L ` ( I +o j ) ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` ( I +o j ) ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
19 1 2 3 precsexlem4 Could not format ( ( I +o j ) e. _om -> ( L ` suc ( I +o j ) ) = ( ( L ` ( I +o j ) ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` ( I +o j ) ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( L ` suc ( I +o j ) ) = ( ( L ` ( I +o j ) ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` ( I +o j ) ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
20 18 19 sseqtrrid I+𝑜jωLI+𝑜jLsucI+𝑜j
21 17 20 syl IωjωLI+𝑜jLsucI+𝑜j
22 nnasuc IωjωI+𝑜sucj=sucI+𝑜j
23 22 fveq2d IωjωLI+𝑜sucj=LsucI+𝑜j
24 21 23 sseqtrrd IωjωLI+𝑜jLI+𝑜sucj
25 sstr2 LILI+𝑜jLI+𝑜jLI+𝑜sucjLILI+𝑜sucj
26 24 25 syl5com IωjωLILI+𝑜jLILI+𝑜sucj
27 26 expcom jωIωLILI+𝑜jLILI+𝑜sucj
28 7 10 13 16 27 finds2 kωIωLILI+𝑜k
29 28 impcom IωkωLILI+𝑜k
30 fveq2 I+𝑜k=JLI+𝑜k=LJ
31 30 sseq2d I+𝑜k=JLILI+𝑜kLILJ
32 29 31 syl5ibcom IωkωI+𝑜k=JLILJ
33 32 rexlimdva IωkωI+𝑜k=JLILJ
34 33 adantr IωJωkωI+𝑜k=JLILJ
35 4 34 sylbid IωJωIJLILJ
36 35 3impia IωJωIJLILJ