Description: Lemma for surreal reciprocal. Show that L is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | precsexlem.1 | No typesetting found for |- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
|
precsexlem.2 | |
||
precsexlem.3 | |
||
Assertion | precsexlem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | precsexlem.1 | Could not format F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
|
2 | precsexlem.2 | |
|
3 | precsexlem.3 | |
|
4 | nnawordex | |
|
5 | oveq2 | |
|
6 | 5 | fveq2d | |
7 | 6 | sseq2d | |
8 | oveq2 | |
|
9 | 8 | fveq2d | |
10 | 9 | sseq2d | |
11 | oveq2 | |
|
12 | 11 | fveq2d | |
13 | 12 | sseq2d | |
14 | nna0 | |
|
15 | 14 | fveq2d | |
16 | 15 | eqimsscd | |
17 | nnacl | |
|
18 | ssun1 | Could not format ( L ` ( I +o j ) ) C_ ( ( L ` ( I +o j ) ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` ( I +o j ) ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s | |
19 | 1 2 3 | precsexlem4 | Could not format ( ( I +o j ) e. _om -> ( L ` suc ( I +o j ) ) = ( ( L ` ( I +o j ) ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` ( I +o j ) ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
20 | 18 19 | sseqtrrid | |
21 | 17 20 | syl | |
22 | nnasuc | |
|
23 | 22 | fveq2d | |
24 | 21 23 | sseqtrrd | |
25 | sstr2 | |
|
26 | 24 25 | syl5com | |
27 | 26 | expcom | |
28 | 7 10 13 16 27 | finds2 | |
29 | 28 | impcom | |
30 | fveq2 | |
|
31 | 30 | sseq2d | |
32 | 29 31 | syl5ibcom | |
33 | 32 | rexlimdva | |
34 | 33 | adantr | |
35 | 4 34 | sylbid | |
36 | 35 | 3impia | |