| Step |
Hyp |
Ref |
Expression |
| 1 |
|
precsexlem.1 |
Could not format F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) : No typesetting found for |- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |- |
| 2 |
|
precsexlem.2 |
|
| 3 |
|
precsexlem.3 |
|
| 4 |
|
nnawordex |
|
| 5 |
|
oveq2 |
|
| 6 |
5
|
fveq2d |
|
| 7 |
6
|
sseq2d |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
fveq2d |
|
| 10 |
9
|
sseq2d |
|
| 11 |
|
oveq2 |
|
| 12 |
11
|
fveq2d |
|
| 13 |
12
|
sseq2d |
|
| 14 |
|
nna0 |
|
| 15 |
14
|
fveq2d |
|
| 16 |
15
|
eqimsscd |
|
| 17 |
|
nnacl |
|
| 18 |
|
ssun1 |
Could not format ( R ` ( I +o j ) ) C_ ( ( R ` ( I +o j ) ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s
|
| 19 |
1 2 3
|
precsexlem5 |
Could not format ( ( I +o j ) e. _om -> ( R ` suc ( I +o j ) ) = ( ( R ` ( I +o j ) ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( R ` suc ( I +o j ) ) = ( ( R ` ( I +o j ) ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s
|
| 20 |
18 19
|
sseqtrrid |
|
| 21 |
17 20
|
syl |
|
| 22 |
|
nnasuc |
|
| 23 |
22
|
fveq2d |
|
| 24 |
21 23
|
sseqtrrd |
|
| 25 |
|
sstr2 |
|
| 26 |
24 25
|
syl5com |
|
| 27 |
26
|
expcom |
|
| 28 |
7 10 13 16 27
|
finds2 |
|
| 29 |
28
|
impcom |
|
| 30 |
|
fveq2 |
|
| 31 |
30
|
sseq2d |
|
| 32 |
29 31
|
syl5ibcom |
|
| 33 |
32
|
rexlimdva |
|
| 34 |
33
|
adantr |
|
| 35 |
4 34
|
sylbid |
|
| 36 |
35
|
3impia |
|