| Step | Hyp | Ref | Expression | 
						
							| 1 |  | precsexlem.1 | ⊢ 𝐹  =  rec ( ( 𝑝  ∈  V  ↦  ⦋ ( 1st  ‘ 𝑝 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑝 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) ,  〈 {  0s  } ,  ∅ 〉 ) | 
						
							| 2 |  | precsexlem.2 | ⊢ 𝐿  =  ( 1st   ∘  𝐹 ) | 
						
							| 3 |  | precsexlem.3 | ⊢ 𝑅  =  ( 2nd   ∘  𝐹 ) | 
						
							| 4 |  | nnawordex | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 𝐼  ⊆  𝐽  ↔  ∃ 𝑘  ∈  ω ( 𝐼  +o  𝑘 )  =  𝐽 ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑘  =  ∅  →  ( 𝐼  +o  𝑘 )  =  ( 𝐼  +o  ∅ ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑘  =  ∅  →  ( 𝑅 ‘ ( 𝐼  +o  𝑘 ) )  =  ( 𝑅 ‘ ( 𝐼  +o  ∅ ) ) ) | 
						
							| 7 | 6 | sseq2d | ⊢ ( 𝑘  =  ∅  →  ( ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  𝑘 ) )  ↔  ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  ∅ ) ) ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐼  +o  𝑘 )  =  ( 𝐼  +o  𝑗 ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( 𝑘  =  𝑗  →  ( 𝑅 ‘ ( 𝐼  +o  𝑘 ) )  =  ( 𝑅 ‘ ( 𝐼  +o  𝑗 ) ) ) | 
						
							| 10 | 9 | sseq2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  𝑘 ) )  ↔  ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  𝑗 ) ) ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑘  =  suc  𝑗  →  ( 𝐼  +o  𝑘 )  =  ( 𝐼  +o  suc  𝑗 ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝑘  =  suc  𝑗  →  ( 𝑅 ‘ ( 𝐼  +o  𝑘 ) )  =  ( 𝑅 ‘ ( 𝐼  +o  suc  𝑗 ) ) ) | 
						
							| 13 | 12 | sseq2d | ⊢ ( 𝑘  =  suc  𝑗  →  ( ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  𝑘 ) )  ↔  ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  suc  𝑗 ) ) ) ) | 
						
							| 14 |  | nna0 | ⊢ ( 𝐼  ∈  ω  →  ( 𝐼  +o  ∅ )  =  𝐼 ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝐼  ∈  ω  →  ( 𝑅 ‘ ( 𝐼  +o  ∅ ) )  =  ( 𝑅 ‘ 𝐼 ) ) | 
						
							| 16 | 15 | eqimsscd | ⊢ ( 𝐼  ∈  ω  →  ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  ∅ ) ) ) | 
						
							| 17 |  | nnacl | ⊢ ( ( 𝐼  ∈  ω  ∧  𝑗  ∈  ω )  →  ( 𝐼  +o  𝑗 )  ∈  ω ) | 
						
							| 18 |  | ssun1 | ⊢ ( 𝑅 ‘ ( 𝐼  +o  𝑗 ) )  ⊆  ( ( 𝑅 ‘ ( 𝐼  +o  𝑗 ) )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ ( 𝐼  +o  𝑗 ) ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ ( 𝐼  +o  𝑗 ) ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) | 
						
							| 19 | 1 2 3 | precsexlem5 | ⊢ ( ( 𝐼  +o  𝑗 )  ∈  ω  →  ( 𝑅 ‘ suc  ( 𝐼  +o  𝑗 ) )  =  ( ( 𝑅 ‘ ( 𝐼  +o  𝑗 ) )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  ( 𝐿 ‘ ( 𝐼  +o  𝑗 ) ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  ( 𝑅 ‘ ( 𝐼  +o  𝑗 ) ) 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) ) | 
						
							| 20 | 18 19 | sseqtrrid | ⊢ ( ( 𝐼  +o  𝑗 )  ∈  ω  →  ( 𝑅 ‘ ( 𝐼  +o  𝑗 ) )  ⊆  ( 𝑅 ‘ suc  ( 𝐼  +o  𝑗 ) ) ) | 
						
							| 21 | 17 20 | syl | ⊢ ( ( 𝐼  ∈  ω  ∧  𝑗  ∈  ω )  →  ( 𝑅 ‘ ( 𝐼  +o  𝑗 ) )  ⊆  ( 𝑅 ‘ suc  ( 𝐼  +o  𝑗 ) ) ) | 
						
							| 22 |  | nnasuc | ⊢ ( ( 𝐼  ∈  ω  ∧  𝑗  ∈  ω )  →  ( 𝐼  +o  suc  𝑗 )  =  suc  ( 𝐼  +o  𝑗 ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( 𝐼  ∈  ω  ∧  𝑗  ∈  ω )  →  ( 𝑅 ‘ ( 𝐼  +o  suc  𝑗 ) )  =  ( 𝑅 ‘ suc  ( 𝐼  +o  𝑗 ) ) ) | 
						
							| 24 | 21 23 | sseqtrrd | ⊢ ( ( 𝐼  ∈  ω  ∧  𝑗  ∈  ω )  →  ( 𝑅 ‘ ( 𝐼  +o  𝑗 ) )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  suc  𝑗 ) ) ) | 
						
							| 25 |  | sstr2 | ⊢ ( ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  𝑗 ) )  →  ( ( 𝑅 ‘ ( 𝐼  +o  𝑗 ) )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  suc  𝑗 ) )  →  ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  suc  𝑗 ) ) ) ) | 
						
							| 26 | 24 25 | syl5com | ⊢ ( ( 𝐼  ∈  ω  ∧  𝑗  ∈  ω )  →  ( ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  𝑗 ) )  →  ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  suc  𝑗 ) ) ) ) | 
						
							| 27 | 26 | expcom | ⊢ ( 𝑗  ∈  ω  →  ( 𝐼  ∈  ω  →  ( ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  𝑗 ) )  →  ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  suc  𝑗 ) ) ) ) ) | 
						
							| 28 | 7 10 13 16 27 | finds2 | ⊢ ( 𝑘  ∈  ω  →  ( 𝐼  ∈  ω  →  ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  𝑘 ) ) ) ) | 
						
							| 29 | 28 | impcom | ⊢ ( ( 𝐼  ∈  ω  ∧  𝑘  ∈  ω )  →  ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  𝑘 ) ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( ( 𝐼  +o  𝑘 )  =  𝐽  →  ( 𝑅 ‘ ( 𝐼  +o  𝑘 ) )  =  ( 𝑅 ‘ 𝐽 ) ) | 
						
							| 31 | 30 | sseq2d | ⊢ ( ( 𝐼  +o  𝑘 )  =  𝐽  →  ( ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ ( 𝐼  +o  𝑘 ) )  ↔  ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ 𝐽 ) ) ) | 
						
							| 32 | 29 31 | syl5ibcom | ⊢ ( ( 𝐼  ∈  ω  ∧  𝑘  ∈  ω )  →  ( ( 𝐼  +o  𝑘 )  =  𝐽  →  ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ 𝐽 ) ) ) | 
						
							| 33 | 32 | rexlimdva | ⊢ ( 𝐼  ∈  ω  →  ( ∃ 𝑘  ∈  ω ( 𝐼  +o  𝑘 )  =  𝐽  →  ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ 𝐽 ) ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( ∃ 𝑘  ∈  ω ( 𝐼  +o  𝑘 )  =  𝐽  →  ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ 𝐽 ) ) ) | 
						
							| 35 | 4 34 | sylbid | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  →  ( 𝐼  ⊆  𝐽  →  ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ 𝐽 ) ) ) | 
						
							| 36 | 35 | 3impia | ⊢ ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝐼  ⊆  𝐽 )  →  ( 𝑅 ‘ 𝐼 )  ⊆  ( 𝑅 ‘ 𝐽 ) ) |