| Step |
Hyp |
Ref |
Expression |
| 1 |
|
precsexlem.1 |
⊢ 𝐹 = rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |
| 2 |
|
precsexlem.2 |
⊢ 𝐿 = ( 1st ∘ 𝐹 ) |
| 3 |
|
precsexlem.3 |
⊢ 𝑅 = ( 2nd ∘ 𝐹 ) |
| 4 |
|
precsexlem.4 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 5 |
|
precsexlem.5 |
⊢ ( 𝜑 → 0s <s 𝐴 ) |
| 6 |
|
precsexlem.6 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑖 = ∅ → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ ∅ ) ) |
| 8 |
7
|
sseq1d |
⊢ ( 𝑖 = ∅ → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ↔ ( 𝐿 ‘ ∅ ) ⊆ No ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑖 = ∅ → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ ∅ ) ) |
| 10 |
9
|
sseq1d |
⊢ ( 𝑖 = ∅ → ( ( 𝑅 ‘ 𝑖 ) ⊆ No ↔ ( 𝑅 ‘ ∅ ) ⊆ No ) ) |
| 11 |
8 10
|
anbi12d |
⊢ ( 𝑖 = ∅ → ( ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ↔ ( ( 𝐿 ‘ ∅ ) ⊆ No ∧ ( 𝑅 ‘ ∅ ) ⊆ No ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑖 = ∅ → ( ( 𝜑 → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ) ↔ ( 𝜑 → ( ( 𝐿 ‘ ∅ ) ⊆ No ∧ ( 𝑅 ‘ ∅ ) ⊆ No ) ) ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) |
| 14 |
13
|
sseq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ↔ ( 𝐿 ‘ 𝑗 ) ⊆ No ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑗 ) ) |
| 16 |
15
|
sseq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑅 ‘ 𝑖 ) ⊆ No ↔ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) |
| 17 |
14 16
|
anbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ↔ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ) |
| 18 |
17
|
imbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝜑 → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ) ↔ ( 𝜑 → ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑖 = suc 𝑗 → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ suc 𝑗 ) ) |
| 20 |
19
|
sseq1d |
⊢ ( 𝑖 = suc 𝑗 → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ↔ ( 𝐿 ‘ suc 𝑗 ) ⊆ No ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑖 = suc 𝑗 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ suc 𝑗 ) ) |
| 22 |
21
|
sseq1d |
⊢ ( 𝑖 = suc 𝑗 → ( ( 𝑅 ‘ 𝑖 ) ⊆ No ↔ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) |
| 23 |
20 22
|
anbi12d |
⊢ ( 𝑖 = suc 𝑗 → ( ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ↔ ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) ) |
| 24 |
23
|
imbi2d |
⊢ ( 𝑖 = suc 𝑗 → ( ( 𝜑 → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ) ↔ ( 𝜑 → ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝐼 ) ) |
| 26 |
25
|
sseq1d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ↔ ( 𝐿 ‘ 𝐼 ) ⊆ No ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ 𝐼 ) ) |
| 28 |
27
|
sseq1d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑅 ‘ 𝑖 ) ⊆ No ↔ ( 𝑅 ‘ 𝐼 ) ⊆ No ) ) |
| 29 |
26 28
|
anbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ↔ ( ( 𝐿 ‘ 𝐼 ) ⊆ No ∧ ( 𝑅 ‘ 𝐼 ) ⊆ No ) ) ) |
| 30 |
29
|
imbi2d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝜑 → ( ( 𝐿 ‘ 𝑖 ) ⊆ No ∧ ( 𝑅 ‘ 𝑖 ) ⊆ No ) ) ↔ ( 𝜑 → ( ( 𝐿 ‘ 𝐼 ) ⊆ No ∧ ( 𝑅 ‘ 𝐼 ) ⊆ No ) ) ) ) |
| 31 |
1 2 3
|
precsexlem1 |
⊢ ( 𝐿 ‘ ∅ ) = { 0s } |
| 32 |
|
0sno |
⊢ 0s ∈ No |
| 33 |
|
snssi |
⊢ ( 0s ∈ No → { 0s } ⊆ No ) |
| 34 |
32 33
|
ax-mp |
⊢ { 0s } ⊆ No |
| 35 |
31 34
|
eqsstri |
⊢ ( 𝐿 ‘ ∅ ) ⊆ No |
| 36 |
1 2 3
|
precsexlem2 |
⊢ ( 𝑅 ‘ ∅ ) = ∅ |
| 37 |
|
0ss |
⊢ ∅ ⊆ No |
| 38 |
36 37
|
eqsstri |
⊢ ( 𝑅 ‘ ∅ ) ⊆ No |
| 39 |
35 38
|
pm3.2i |
⊢ ( ( 𝐿 ‘ ∅ ) ⊆ No ∧ ( 𝑅 ‘ ∅ ) ⊆ No ) |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → ( ( 𝐿 ‘ ∅ ) ⊆ No ∧ ( 𝑅 ‘ ∅ ) ⊆ No ) ) |
| 41 |
1 2 3
|
precsexlem4 |
⊢ ( 𝑗 ∈ ω → ( 𝐿 ‘ suc 𝑗 ) = ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
| 42 |
41
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( 𝐿 ‘ suc 𝑗 ) = ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
| 43 |
|
simp3l |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( 𝐿 ‘ 𝑗 ) ⊆ No ) |
| 44 |
|
1sno |
⊢ 1s ∈ No |
| 45 |
44
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
| 46 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
| 47 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) |
| 48 |
46 47
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ No ) |
| 49 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → 𝐴 ∈ No ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
| 51 |
48 50
|
subscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑥𝑅 -s 𝐴 ) ∈ No ) |
| 52 |
|
simpl3l |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐿 ‘ 𝑗 ) ⊆ No ) |
| 53 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) |
| 54 |
52 53
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑦𝐿 ∈ No ) |
| 55 |
51 54
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ∈ No ) |
| 56 |
45 55
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ∈ No ) |
| 57 |
32
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s ∈ No ) |
| 58 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → 0s <s 𝐴 ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s <s 𝐴 ) |
| 60 |
|
rightgt |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝐴 <s 𝑥𝑅 ) |
| 61 |
47 60
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝐴 <s 𝑥𝑅 ) |
| 62 |
57 50 48 59 61
|
slttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝑅 ) |
| 63 |
62
|
sgt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝑅 ≠ 0s ) |
| 64 |
|
breq2 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝑅 ) ) |
| 65 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑥𝑅 ·s 𝑦 ) ) |
| 66 |
65
|
eqeq1d |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) |
| 67 |
66
|
rexbidv |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) |
| 68 |
64 67
|
imbi12d |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑥𝑅 → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) ) |
| 69 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
| 70 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
| 71 |
|
elun2 |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝑥𝑅 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 72 |
47 71
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 73 |
68 70 72
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 0s <s 𝑥𝑅 → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) |
| 74 |
62 73
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) |
| 75 |
56 48 63 74
|
divsclwd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∈ No ) |
| 76 |
|
eleq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → ( 𝑎 ∈ No ↔ ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∈ No ) ) |
| 77 |
75 76
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → 𝑎 ∈ No ) ) |
| 78 |
77
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → 𝑎 ∈ No ) ) |
| 79 |
78
|
abssdv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ⊆ No ) |
| 80 |
44
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
| 81 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
| 82 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ⊆ ( L ‘ 𝐴 ) |
| 83 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) |
| 84 |
82 83
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) |
| 85 |
81 84
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ No ) |
| 86 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
| 87 |
85 86
|
subscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑥𝐿 -s 𝐴 ) ∈ No ) |
| 88 |
|
simpl3r |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑅 ‘ 𝑗 ) ⊆ No ) |
| 89 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) |
| 90 |
88 89
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑦𝑅 ∈ No ) |
| 91 |
87 90
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ∈ No ) |
| 92 |
80 91
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ∈ No ) |
| 93 |
|
breq2 |
⊢ ( 𝑥 = 𝑥𝐿 → ( 0s <s 𝑥 ↔ 0s <s 𝑥𝐿 ) ) |
| 94 |
93
|
elrab |
⊢ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ↔ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∧ 0s <s 𝑥𝐿 ) ) |
| 95 |
94
|
simprbi |
⊢ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → 0s <s 𝑥𝐿 ) |
| 96 |
83 95
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝐿 ) |
| 97 |
96
|
sgt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝐿 ≠ 0s ) |
| 98 |
|
breq2 |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝐿 ) ) |
| 99 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑥𝐿 ·s 𝑦 ) ) |
| 100 |
99
|
eqeq1d |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) |
| 101 |
100
|
rexbidv |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) |
| 102 |
98 101
|
imbi12d |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑥𝐿 → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) ) |
| 103 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
| 104 |
|
elun1 |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) → 𝑥𝐿 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 105 |
84 104
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 106 |
102 103 105
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 0s <s 𝑥𝐿 → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) |
| 107 |
96 106
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) |
| 108 |
92 85 97 107
|
divsclwd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ∈ No ) |
| 109 |
|
eleq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → ( 𝑎 ∈ No ↔ ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ∈ No ) ) |
| 110 |
108 109
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → 𝑎 ∈ No ) ) |
| 111 |
110
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → 𝑎 ∈ No ) ) |
| 112 |
111
|
abssdv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ⊆ No ) |
| 113 |
79 112
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ⊆ No ) |
| 114 |
43 113
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ⊆ No ) |
| 115 |
42 114
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( 𝐿 ‘ suc 𝑗 ) ⊆ No ) |
| 116 |
1 2 3
|
precsexlem5 |
⊢ ( 𝑗 ∈ ω → ( 𝑅 ‘ suc 𝑗 ) = ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
| 117 |
116
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( 𝑅 ‘ suc 𝑗 ) = ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
| 118 |
|
simp3r |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( 𝑅 ‘ 𝑗 ) ⊆ No ) |
| 119 |
44
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
| 120 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) |
| 121 |
82 120
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) |
| 122 |
81 121
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ No ) |
| 123 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
| 124 |
122 123
|
subscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑥𝐿 -s 𝐴 ) ∈ No ) |
| 125 |
|
simpl3l |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐿 ‘ 𝑗 ) ⊆ No ) |
| 126 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) |
| 127 |
125 126
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑦𝐿 ∈ No ) |
| 128 |
124 127
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ∈ No ) |
| 129 |
119 128
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ∈ No ) |
| 130 |
120 95
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝐿 ) |
| 131 |
130
|
sgt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 ≠ 0s ) |
| 132 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
| 133 |
121 104
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 134 |
102 132 133
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 0s <s 𝑥𝐿 → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) |
| 135 |
130 134
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) |
| 136 |
129 122 131 135
|
divsclwd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∈ No ) |
| 137 |
|
eleq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → ( 𝑎 ∈ No ↔ ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∈ No ) ) |
| 138 |
136 137
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → 𝑎 ∈ No ) ) |
| 139 |
138
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → 𝑎 ∈ No ) ) |
| 140 |
139
|
abssdv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ⊆ No ) |
| 141 |
44
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
| 142 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) |
| 143 |
46 142
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ No ) |
| 144 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
| 145 |
143 144
|
subscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑥𝑅 -s 𝐴 ) ∈ No ) |
| 146 |
|
simpl3r |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑅 ‘ 𝑗 ) ⊆ No ) |
| 147 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) |
| 148 |
146 147
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑦𝑅 ∈ No ) |
| 149 |
145 148
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ∈ No ) |
| 150 |
141 149
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ∈ No ) |
| 151 |
32
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s ∈ No ) |
| 152 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s <s 𝐴 ) |
| 153 |
142 60
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝐴 <s 𝑥𝑅 ) |
| 154 |
151 144 143 152 153
|
slttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝑅 ) |
| 155 |
154
|
sgt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝑅 ≠ 0s ) |
| 156 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
| 157 |
142 71
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 158 |
68 156 157
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 0s <s 𝑥𝑅 → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) |
| 159 |
154 158
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) |
| 160 |
150 143 155 159
|
divsclwd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ∈ No ) |
| 161 |
|
eleq1 |
⊢ ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → ( 𝑎 ∈ No ↔ ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ∈ No ) ) |
| 162 |
160 161
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → 𝑎 ∈ No ) ) |
| 163 |
162
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → 𝑎 ∈ No ) ) |
| 164 |
163
|
abssdv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ⊆ No ) |
| 165 |
140 164
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ⊆ No ) |
| 166 |
118 165
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⊆ No ) |
| 167 |
117 166
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) |
| 168 |
115 167
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) |
| 169 |
168
|
3exp |
⊢ ( 𝜑 → ( 𝑗 ∈ ω → ( ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) → ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) ) ) |
| 170 |
169
|
com12 |
⊢ ( 𝑗 ∈ ω → ( 𝜑 → ( ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) → ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) ) ) |
| 171 |
170
|
a2d |
⊢ ( 𝑗 ∈ ω → ( ( 𝜑 → ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) → ( 𝜑 → ( ( 𝐿 ‘ suc 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ suc 𝑗 ) ⊆ No ) ) ) ) |
| 172 |
12 18 24 30 40 171
|
finds |
⊢ ( 𝐼 ∈ ω → ( 𝜑 → ( ( 𝐿 ‘ 𝐼 ) ⊆ No ∧ ( 𝑅 ‘ 𝐼 ) ⊆ No ) ) ) |
| 173 |
172
|
impcom |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ω ) → ( ( 𝐿 ‘ 𝐼 ) ⊆ No ∧ ( 𝑅 ‘ 𝐼 ) ⊆ No ) ) |