| Step |
Hyp |
Ref |
Expression |
| 1 |
|
precsexlem.1 |
⊢ 𝐹 = rec ( ( 𝑝 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑙 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑟 ⦌ 〈 ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ 𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ 𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) 〉 ) , 〈 { 0s } , ∅ 〉 ) |
| 2 |
|
precsexlem.2 |
⊢ 𝐿 = ( 1st ∘ 𝐹 ) |
| 3 |
|
precsexlem.3 |
⊢ 𝑅 = ( 2nd ∘ 𝐹 ) |
| 4 |
|
precsexlem.4 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 5 |
|
precsexlem.5 |
⊢ ( 𝜑 → 0s <s 𝐴 ) |
| 6 |
|
precsexlem.6 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑖 = ∅ → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ ∅ ) ) |
| 8 |
7
|
raleqdv |
⊢ ( 𝑖 = ∅ → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑖 = ∅ → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ ∅ ) ) |
| 10 |
9
|
raleqdv |
⊢ ( 𝑖 = ∅ → ( ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
| 11 |
8 10
|
anbi12d |
⊢ ( 𝑖 = ∅ → ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑖 = ∅ → ( ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ↔ ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) |
| 14 |
13
|
raleqdv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑗 ) ) |
| 16 |
15
|
raleqdv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
| 17 |
14 16
|
anbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) |
| 18 |
17
|
imbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ↔ ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑖 = suc 𝑗 → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ suc 𝑗 ) ) |
| 20 |
19
|
raleqdv |
⊢ ( 𝑖 = suc 𝑗 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑏 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑖 = suc 𝑗 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ suc 𝑗 ) ) |
| 22 |
21
|
raleqdv |
⊢ ( 𝑖 = suc 𝑗 → ( ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
| 23 |
20 22
|
anbi12d |
⊢ ( 𝑖 = suc 𝑗 → ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑏 = 𝑟 → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s 𝑟 ) ) |
| 25 |
24
|
breq1d |
⊢ ( 𝑏 = 𝑟 → ( ( 𝐴 ·s 𝑏 ) <s 1s ↔ ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
| 26 |
25
|
cbvralvw |
⊢ ( ∀ 𝑏 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ) |
| 27 |
|
oveq2 |
⊢ ( 𝑐 = 𝑠 → ( 𝐴 ·s 𝑐 ) = ( 𝐴 ·s 𝑠 ) ) |
| 28 |
27
|
breq2d |
⊢ ( 𝑐 = 𝑠 → ( 1s <s ( 𝐴 ·s 𝑐 ) ↔ 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
| 29 |
28
|
cbvralvw |
⊢ ( ∀ 𝑐 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) |
| 30 |
26 29
|
anbi12i |
⊢ ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
| 31 |
23 30
|
bitrdi |
⊢ ( 𝑖 = suc 𝑗 → ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) ) |
| 32 |
31
|
imbi2d |
⊢ ( 𝑖 = suc 𝑗 → ( ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ↔ ( 𝜑 → ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝐼 ) ) |
| 34 |
33
|
raleqdv |
⊢ ( 𝑖 = 𝐼 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑏 ∈ ( 𝐿 ‘ 𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ 𝐼 ) ) |
| 36 |
35
|
raleqdv |
⊢ ( 𝑖 = 𝐼 → ( ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
| 37 |
34 36
|
anbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) |
| 38 |
37
|
imbi2d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ↔ ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) ) |
| 39 |
|
muls01 |
⊢ ( 𝐴 ∈ No → ( 𝐴 ·s 0s ) = 0s ) |
| 40 |
4 39
|
syl |
⊢ ( 𝜑 → ( 𝐴 ·s 0s ) = 0s ) |
| 41 |
|
0slt1s |
⊢ 0s <s 1s |
| 42 |
40 41
|
eqbrtrdi |
⊢ ( 𝜑 → ( 𝐴 ·s 0s ) <s 1s ) |
| 43 |
1 2 3
|
precsexlem1 |
⊢ ( 𝐿 ‘ ∅ ) = { 0s } |
| 44 |
43
|
raleqi |
⊢ ( ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑏 ∈ { 0s } ( 𝐴 ·s 𝑏 ) <s 1s ) |
| 45 |
|
0sno |
⊢ 0s ∈ No |
| 46 |
45
|
elexi |
⊢ 0s ∈ V |
| 47 |
|
oveq2 |
⊢ ( 𝑏 = 0s → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s 0s ) ) |
| 48 |
47
|
breq1d |
⊢ ( 𝑏 = 0s → ( ( 𝐴 ·s 𝑏 ) <s 1s ↔ ( 𝐴 ·s 0s ) <s 1s ) ) |
| 49 |
46 48
|
ralsn |
⊢ ( ∀ 𝑏 ∈ { 0s } ( 𝐴 ·s 𝑏 ) <s 1s ↔ ( 𝐴 ·s 0s ) <s 1s ) |
| 50 |
44 49
|
bitri |
⊢ ( ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ( 𝐴 ·s 0s ) <s 1s ) |
| 51 |
42 50
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ) |
| 52 |
|
ral0 |
⊢ ∀ 𝑐 ∈ ∅ 1s <s ( 𝐴 ·s 𝑐 ) |
| 53 |
1 2 3
|
precsexlem2 |
⊢ ( 𝑅 ‘ ∅ ) = ∅ |
| 54 |
53
|
raleqi |
⊢ ( ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑐 ∈ ∅ 1s <s ( 𝐴 ·s 𝑐 ) ) |
| 55 |
52 54
|
mpbir |
⊢ ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) |
| 56 |
51 55
|
jctir |
⊢ ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) |
| 57 |
1 2 3
|
precsexlem4 |
⊢ ( 𝑗 ∈ ω → ( 𝐿 ‘ suc 𝑗 ) = ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
| 58 |
57
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝐿 ‘ suc 𝑗 ) = ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
| 59 |
58
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ↔ 𝑟 ∈ ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) ) |
| 60 |
|
elun |
⊢ ( 𝑟 ∈ ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ↔ ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) ∨ 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) |
| 61 |
|
elun |
⊢ ( 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ↔ ( 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∨ 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) |
| 62 |
|
vex |
⊢ 𝑟 ∈ V |
| 63 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑟 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) ) |
| 64 |
63
|
2rexbidv |
⊢ ( 𝑎 = 𝑟 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) ) |
| 65 |
62 64
|
elab |
⊢ ( 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) |
| 66 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑟 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
| 67 |
66
|
2rexbidv |
⊢ ( 𝑎 = 𝑟 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
| 68 |
62 67
|
elab |
⊢ ( 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) |
| 69 |
65 68
|
orbi12i |
⊢ ( ( 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∨ 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
| 70 |
61 69
|
bitri |
⊢ ( 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
| 71 |
70
|
orbi2i |
⊢ ( ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) ∨ 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ↔ ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) ) |
| 72 |
60 71
|
bitri |
⊢ ( 𝑟 ∈ ( ( 𝐿 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ↔ ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) ) |
| 73 |
59 72
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ↔ ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) ) ) |
| 74 |
|
simp3l |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ) |
| 75 |
25
|
rspccv |
⊢ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s → ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
| 76 |
74 75
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
| 77 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → 𝐴 ∈ No ) |
| 78 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
| 79 |
|
1sno |
⊢ 1s ∈ No |
| 80 |
79
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
| 81 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
| 82 |
81
|
sseli |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝑥𝑅 ∈ No ) |
| 83 |
82
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝑥𝑅 ∈ No ) |
| 84 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝐴 ∈ No ) |
| 85 |
83 84
|
subscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → ( 𝑥𝑅 -s 𝐴 ) ∈ No ) |
| 86 |
85
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑥𝑅 -s 𝐴 ) ∈ No ) |
| 87 |
1 2 3 4 5 6
|
precsexlem8 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ) → ( ( 𝐿 ‘ 𝑗 ) ⊆ No ∧ ( 𝑅 ‘ 𝑗 ) ⊆ No ) ) |
| 88 |
87
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ) → ( 𝐿 ‘ 𝑗 ) ⊆ No ) |
| 89 |
88
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝐿 ‘ 𝑗 ) ⊆ No ) |
| 90 |
89
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) → 𝑦𝐿 ∈ No ) |
| 91 |
90
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑦𝐿 ∈ No ) |
| 92 |
86 91
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ∈ No ) |
| 93 |
80 92
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ∈ No ) |
| 94 |
83
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ No ) |
| 95 |
45
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 0s ∈ No ) |
| 96 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → 0s <s 𝐴 ) |
| 97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 0s <s 𝐴 ) |
| 98 |
|
breq2 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 𝐴 <s 𝑥𝑂 ↔ 𝐴 <s 𝑥𝑅 ) ) |
| 99 |
|
rightval |
⊢ ( R ‘ 𝐴 ) = { 𝑥𝑂 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝐴 <s 𝑥𝑂 } |
| 100 |
98 99
|
elrab2 |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ↔ ( 𝑥𝑅 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∧ 𝐴 <s 𝑥𝑅 ) ) |
| 101 |
100
|
simprbi |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝐴 <s 𝑥𝑅 ) |
| 102 |
101
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝐴 <s 𝑥𝑅 ) |
| 103 |
95 84 83 97 102
|
slttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 0s <s 𝑥𝑅 ) |
| 104 |
103
|
sgt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝑥𝑅 ≠ 0s ) |
| 105 |
104
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝑅 ≠ 0s ) |
| 106 |
|
breq2 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝑅 ) ) |
| 107 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑥𝑅 ·s 𝑦 ) ) |
| 108 |
107
|
eqeq1d |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) |
| 109 |
108
|
rexbidv |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) |
| 110 |
106 109
|
imbi12d |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑥𝑅 → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) ) |
| 111 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
| 112 |
111
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
| 113 |
|
elun2 |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝑥𝑅 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 114 |
113
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 115 |
110 112 114
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → ( 0s <s 𝑥𝑅 → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) |
| 116 |
103 115
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) |
| 117 |
116
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) |
| 118 |
78 93 94 105 117
|
divsasswd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝑅 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) ) |
| 119 |
|
oveq2 |
⊢ ( 𝑏 = 𝑦𝐿 → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s 𝑦𝐿 ) ) |
| 120 |
119
|
breq1d |
⊢ ( 𝑏 = 𝑦𝐿 → ( ( 𝐴 ·s 𝑏 ) <s 1s ↔ ( 𝐴 ·s 𝑦𝐿 ) <s 1s ) ) |
| 121 |
120
|
rspccva |
⊢ ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) → ( 𝐴 ·s 𝑦𝐿 ) <s 1s ) |
| 122 |
74 121
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) → ( 𝐴 ·s 𝑦𝐿 ) <s 1s ) |
| 123 |
122
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝐿 ) <s 1s ) |
| 124 |
78 91
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝐿 ) ∈ No ) |
| 125 |
84 83
|
posdifsd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → ( 𝐴 <s 𝑥𝑅 ↔ 0s <s ( 𝑥𝑅 -s 𝐴 ) ) ) |
| 126 |
102 125
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 0s <s ( 𝑥𝑅 -s 𝐴 ) ) |
| 127 |
126
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s <s ( 𝑥𝑅 -s 𝐴 ) ) |
| 128 |
124 80 86 127
|
sltmul2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s 𝑦𝐿 ) <s 1s ↔ ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) ) ) |
| 129 |
123 128
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) ) |
| 130 |
86
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) = ( 𝑥𝑅 -s 𝐴 ) ) |
| 131 |
129 130
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( 𝑥𝑅 -s 𝐴 ) ) |
| 132 |
86 124
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ∈ No ) |
| 133 |
78 132 94
|
sltaddsub2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) <s 𝑥𝑅 ↔ ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( 𝑥𝑅 -s 𝐴 ) ) ) |
| 134 |
131 133
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) <s 𝑥𝑅 ) |
| 135 |
78 80 92
|
addsdid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) ) |
| 136 |
78
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 1s ) = 𝐴 ) |
| 137 |
78 86 91
|
muls12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) |
| 138 |
136 137
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) ) |
| 139 |
135 138
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) ) |
| 140 |
94
|
mulslidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 1s ·s 𝑥𝑅 ) = 𝑥𝑅 ) |
| 141 |
134 139 140
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) <s ( 1s ·s 𝑥𝑅 ) ) |
| 142 |
78 93
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) ∈ No ) |
| 143 |
103
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝑅 ) |
| 144 |
142 80 94 143 117
|
sltdivmul2wd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝑅 ) <s 1s ↔ ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) <s ( 1s ·s 𝑥𝑅 ) ) ) |
| 145 |
141 144
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝑅 ) <s 1s ) |
| 146 |
118 145
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) <s 1s ) |
| 147 |
|
oveq2 |
⊢ ( 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → ( 𝐴 ·s 𝑟 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) ) |
| 148 |
147
|
breq1d |
⊢ ( 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → ( ( 𝐴 ·s 𝑟 ) <s 1s ↔ ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) <s 1s ) ) |
| 149 |
146 148
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
| 150 |
149
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
| 151 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
| 152 |
79
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
| 153 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
| 154 |
|
elrabi |
⊢ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) |
| 155 |
154
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ) |
| 156 |
153 155
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑥𝐿 ∈ No ) |
| 157 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝐴 ∈ No ) |
| 158 |
156 157
|
subscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑥𝐿 -s 𝐴 ) ∈ No ) |
| 159 |
158
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑥𝐿 -s 𝐴 ) ∈ No ) |
| 160 |
87
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ) → ( 𝑅 ‘ 𝑗 ) ⊆ No ) |
| 161 |
160
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑅 ‘ 𝑗 ) ⊆ No ) |
| 162 |
161
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) → 𝑦𝑅 ∈ No ) |
| 163 |
162
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑦𝑅 ∈ No ) |
| 164 |
159 163
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ∈ No ) |
| 165 |
152 164
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ∈ No ) |
| 166 |
156
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ No ) |
| 167 |
|
breq2 |
⊢ ( 𝑥 = 𝑥𝐿 → ( 0s <s 𝑥 ↔ 0s <s 𝑥𝐿 ) ) |
| 168 |
167
|
elrab |
⊢ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ↔ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∧ 0s <s 𝑥𝐿 ) ) |
| 169 |
168
|
simprbi |
⊢ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → 0s <s 𝑥𝐿 ) |
| 170 |
169
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 0s <s 𝑥𝐿 ) |
| 171 |
170
|
sgt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑥𝐿 ≠ 0s ) |
| 172 |
171
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝐿 ≠ 0s ) |
| 173 |
|
breq2 |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝐿 ) ) |
| 174 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑥𝐿 ·s 𝑦 ) ) |
| 175 |
174
|
eqeq1d |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) |
| 176 |
175
|
rexbidv |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) |
| 177 |
173 176
|
imbi12d |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑥𝐿 → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) ) |
| 178 |
111
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 ∈ No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ) |
| 179 |
|
elun1 |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) → 𝑥𝐿 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 180 |
155 179
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑥𝐿 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
| 181 |
177 178 180
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 0s <s 𝑥𝐿 → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) |
| 182 |
170 181
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) |
| 183 |
182
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) |
| 184 |
151 165 166 172 183
|
divsasswd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝐿 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
| 185 |
157 156
|
subscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝐴 -s 𝑥𝐿 ) ∈ No ) |
| 186 |
185
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 -s 𝑥𝐿 ) ∈ No ) |
| 187 |
186
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) = ( 𝐴 -s 𝑥𝐿 ) ) |
| 188 |
|
simp3r |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) |
| 189 |
|
oveq2 |
⊢ ( 𝑐 = 𝑦𝑅 → ( 𝐴 ·s 𝑐 ) = ( 𝐴 ·s 𝑦𝑅 ) ) |
| 190 |
189
|
breq2d |
⊢ ( 𝑐 = 𝑦𝑅 → ( 1s <s ( 𝐴 ·s 𝑐 ) ↔ 1s <s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
| 191 |
190
|
rspccva |
⊢ ( ( ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) → 1s <s ( 𝐴 ·s 𝑦𝑅 ) ) |
| 192 |
188 191
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) → 1s <s ( 𝐴 ·s 𝑦𝑅 ) ) |
| 193 |
192
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s <s ( 𝐴 ·s 𝑦𝑅 ) ) |
| 194 |
151 163
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝑅 ) ∈ No ) |
| 195 |
|
breq1 |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( 𝑥𝑂 <s 𝐴 ↔ 𝑥𝐿 <s 𝐴 ) ) |
| 196 |
|
leftval |
⊢ ( L ‘ 𝐴 ) = { 𝑥𝑂 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝑥𝑂 <s 𝐴 } |
| 197 |
195 196
|
elrab2 |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ↔ ( 𝑥𝐿 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∧ 𝑥𝐿 <s 𝐴 ) ) |
| 198 |
197
|
simprbi |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) → 𝑥𝐿 <s 𝐴 ) |
| 199 |
155 198
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑥𝐿 <s 𝐴 ) |
| 200 |
156 157
|
posdifsd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑥𝐿 <s 𝐴 ↔ 0s <s ( 𝐴 -s 𝑥𝐿 ) ) ) |
| 201 |
199 200
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 0s <s ( 𝐴 -s 𝑥𝐿 ) ) |
| 202 |
201
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s <s ( 𝐴 -s 𝑥𝐿 ) ) |
| 203 |
152 194 186 202
|
sltmul2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s <s ( 𝐴 ·s 𝑦𝑅 ) ↔ ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) <s ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
| 204 |
193 203
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) <s ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
| 205 |
187 204
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 -s 𝑥𝐿 ) <s ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
| 206 |
156 157
|
negsubsdi2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) = ( 𝐴 -s 𝑥𝐿 ) ) |
| 207 |
206
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) = ( 𝐴 -s 𝑥𝐿 ) ) |
| 208 |
159 194
|
mulnegs1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) = ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
| 209 |
206
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
| 210 |
209
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
| 211 |
208 210
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
| 212 |
205 207 211
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) <s ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
| 213 |
159 194
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ∈ No ) |
| 214 |
213 159
|
sltnegd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) <s ( 𝑥𝐿 -s 𝐴 ) ↔ ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) <s ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) ) |
| 215 |
212 214
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) <s ( 𝑥𝐿 -s 𝐴 ) ) |
| 216 |
151 213 166
|
sltaddsub2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) <s 𝑥𝐿 ↔ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) <s ( 𝑥𝐿 -s 𝐴 ) ) ) |
| 217 |
215 216
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) <s 𝑥𝐿 ) |
| 218 |
151 152 164
|
addsdid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) ) |
| 219 |
151
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 1s ) = 𝐴 ) |
| 220 |
151 159 163
|
muls12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
| 221 |
219 220
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
| 222 |
218 221
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
| 223 |
166
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑥𝐿 ·s 1s ) = 𝑥𝐿 ) |
| 224 |
217 222 223
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) <s ( 𝑥𝐿 ·s 1s ) ) |
| 225 |
151 165
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) ∈ No ) |
| 226 |
170
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝐿 ) |
| 227 |
225 152 166 226 183
|
sltdivmulwd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝐿 ) <s 1s ↔ ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) <s ( 𝑥𝐿 ·s 1s ) ) ) |
| 228 |
224 227
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝐿 ) <s 1s ) |
| 229 |
184 228
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) <s 1s ) |
| 230 |
|
oveq2 |
⊢ ( 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → ( 𝐴 ·s 𝑟 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) |
| 231 |
230
|
breq1d |
⊢ ( 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → ( ( 𝐴 ·s 𝑟 ) <s 1s ↔ ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) <s 1s ) ) |
| 232 |
229 231
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
| 233 |
232
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
| 234 |
150 233
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
| 235 |
76 234
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ( 𝑟 ∈ ( 𝐿 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
| 236 |
73 235
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) ) |
| 237 |
236
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ) |
| 238 |
1 2 3
|
precsexlem5 |
⊢ ( 𝑗 ∈ ω → ( 𝑅 ‘ suc 𝑗 ) = ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
| 239 |
238
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑅 ‘ suc 𝑗 ) = ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
| 240 |
239
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) ↔ 𝑠 ∈ ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) ) |
| 241 |
|
elun |
⊢ ( 𝑠 ∈ ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ↔ ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) ∨ 𝑠 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) |
| 242 |
|
elun |
⊢ ( 𝑠 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ↔ ( 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∨ 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) |
| 243 |
|
vex |
⊢ 𝑠 ∈ V |
| 244 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑠 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
| 245 |
244
|
2rexbidv |
⊢ ( 𝑎 = 𝑠 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
| 246 |
243 245
|
elab |
⊢ ( 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) |
| 247 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑠 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
| 248 |
247
|
2rexbidv |
⊢ ( 𝑎 = 𝑠 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
| 249 |
243 248
|
elab |
⊢ ( 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) |
| 250 |
246 249
|
orbi12i |
⊢ ( ( 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∨ 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ↔ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
| 251 |
242 250
|
bitri |
⊢ ( 𝑠 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ↔ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
| 252 |
251
|
orbi2i |
⊢ ( ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) ∨ 𝑠 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ↔ ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) ) |
| 253 |
241 252
|
bitri |
⊢ ( 𝑠 ∈ ( ( 𝑅 ‘ 𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ↔ ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) ) |
| 254 |
240 253
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) ↔ ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) ) ) |
| 255 |
28
|
rspccv |
⊢ ( ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) → ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
| 256 |
188 255
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
| 257 |
122
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝐿 ) <s 1s ) |
| 258 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
| 259 |
90
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑦𝐿 ∈ No ) |
| 260 |
258 259
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝐿 ) ∈ No ) |
| 261 |
79
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
| 262 |
185
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 -s 𝑥𝐿 ) ∈ No ) |
| 263 |
201
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s <s ( 𝐴 -s 𝑥𝐿 ) ) |
| 264 |
260 261 262 263
|
sltmul2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s 𝑦𝐿 ) <s 1s ↔ ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) ) ) |
| 265 |
257 264
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) ) |
| 266 |
262
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) = ( 𝐴 -s 𝑥𝐿 ) ) |
| 267 |
265 266
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( 𝐴 -s 𝑥𝐿 ) ) |
| 268 |
158
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑥𝐿 -s 𝐴 ) ∈ No ) |
| 269 |
268 260
|
mulnegs1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) = ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) ) |
| 270 |
206
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) |
| 271 |
270
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) |
| 272 |
269 271
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) |
| 273 |
206
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) = ( 𝐴 -s 𝑥𝐿 ) ) |
| 274 |
267 272 273
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) <s ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ) |
| 275 |
268 260
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ∈ No ) |
| 276 |
268 275
|
sltnegd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) <s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ↔ ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) <s ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ) ) |
| 277 |
274 276
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑥𝐿 -s 𝐴 ) <s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) |
| 278 |
156
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 ∈ No ) |
| 279 |
278 258 275
|
sltsubadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) <s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ↔ 𝑥𝐿 <s ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) ) ) |
| 280 |
277 279
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 <s ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) ) |
| 281 |
278
|
mulslidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 1s ·s 𝑥𝐿 ) = 𝑥𝐿 ) |
| 282 |
268 259
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ∈ No ) |
| 283 |
258 261 282
|
addsdid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) ) |
| 284 |
258
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 1s ) = 𝐴 ) |
| 285 |
258 268 259
|
muls12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) |
| 286 |
284 285
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) ) |
| 287 |
283 286
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) ) |
| 288 |
280 281 287
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 1s ·s 𝑥𝐿 ) <s ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) ) |
| 289 |
261 282
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ∈ No ) |
| 290 |
258 289
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) ∈ No ) |
| 291 |
170
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝐿 ) |
| 292 |
182
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) |
| 293 |
261 290 278 291 292
|
sltmuldivwd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 1s ·s 𝑥𝐿 ) <s ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) ↔ 1s <s ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝐿 ) ) ) |
| 294 |
288 293
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 1s <s ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝐿 ) ) |
| 295 |
171
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 𝑥𝐿 ≠ 0s ) |
| 296 |
258 289 278 295 292
|
divsasswd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝐿 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
| 297 |
294 296
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → 1s <s ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
| 298 |
|
oveq2 |
⊢ ( 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → ( 𝐴 ·s 𝑠 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) |
| 299 |
298
|
breq2d |
⊢ ( 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → ( 1s <s ( 𝐴 ·s 𝑠 ) ↔ 1s <s ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) ) |
| 300 |
297 299
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
| 301 |
300
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
| 302 |
85
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑥𝑅 -s 𝐴 ) ∈ No ) |
| 303 |
302
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) = ( 𝑥𝑅 -s 𝐴 ) ) |
| 304 |
192
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s <s ( 𝐴 ·s 𝑦𝑅 ) ) |
| 305 |
79
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s ∈ No ) |
| 306 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝐴 ∈ No ) |
| 307 |
162
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑦𝑅 ∈ No ) |
| 308 |
306 307
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝑅 ) ∈ No ) |
| 309 |
126
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s <s ( 𝑥𝑅 -s 𝐴 ) ) |
| 310 |
305 308 302 309
|
sltmul2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s <s ( 𝐴 ·s 𝑦𝑅 ) ↔ ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
| 311 |
304 310
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
| 312 |
303 311
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑥𝑅 -s 𝐴 ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
| 313 |
83
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝑅 ∈ No ) |
| 314 |
302 308
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ∈ No ) |
| 315 |
313 306 314
|
sltsubadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ↔ 𝑥𝑅 <s ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) ) |
| 316 |
312 315
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝑅 <s ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
| 317 |
313
|
mulslidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s ·s 𝑥𝑅 ) = 𝑥𝑅 ) |
| 318 |
302 307
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ∈ No ) |
| 319 |
306 305 318
|
addsdid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) ) |
| 320 |
306
|
mulsridd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s 1s ) = 𝐴 ) |
| 321 |
306 302 307
|
muls12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) |
| 322 |
320 321
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
| 323 |
319 322
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) |
| 324 |
316 317 323
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s ·s 𝑥𝑅 ) <s ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) ) |
| 325 |
305 318
|
addscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ∈ No ) |
| 326 |
306 325
|
mulscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) ∈ No ) |
| 327 |
103
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 0s <s 𝑥𝑅 ) |
| 328 |
116
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) |
| 329 |
305 326 313 327 328
|
sltmuldivwd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 1s ·s 𝑥𝑅 ) <s ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) ↔ 1s <s ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝑅 ) ) ) |
| 330 |
324 329
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s <s ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝑅 ) ) |
| 331 |
104
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 𝑥𝑅 ≠ 0s ) |
| 332 |
306 325 313 331 328
|
divsasswd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝑅 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
| 333 |
330 332
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → 1s <s ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
| 334 |
|
oveq2 |
⊢ ( 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → ( 𝐴 ·s 𝑠 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) |
| 335 |
334
|
breq2d |
⊢ ( 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → ( 1s <s ( 𝐴 ·s 𝑠 ) ↔ 1s <s ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) ) |
| 336 |
333 335
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) ) ) → ( 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
| 337 |
336
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
| 338 |
301 337
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
| 339 |
256 338
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ( 𝑠 ∈ ( 𝑅 ‘ 𝑗 ) ∨ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅 ‘ 𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
| 340 |
254 339
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
| 341 |
340
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) |
| 342 |
237 341
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) |
| 343 |
342
|
3exp |
⊢ ( 𝜑 → ( 𝑗 ∈ ω → ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) → ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) ) ) |
| 344 |
343
|
com12 |
⊢ ( 𝑗 ∈ ω → ( 𝜑 → ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) → ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) ) ) |
| 345 |
344
|
a2d |
⊢ ( 𝑗 ∈ ω → ( ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝜑 → ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) ) ) |
| 346 |
12 18 32 38 56 345
|
finds |
⊢ ( 𝐼 ∈ ω → ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) |
| 347 |
346
|
impcom |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ω ) → ( ∀ 𝑏 ∈ ( 𝐿 ‘ 𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ 𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) |