Metamath Proof Explorer


Theorem precsexlem9

Description: Lemma for surreal reciprocal. Show that the product of A and a left element is less than one and the product of A and a right element is greater than one. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses precsexlem.1 𝐹 = rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )
precsexlem.2 𝐿 = ( 1st𝐹 )
precsexlem.3 𝑅 = ( 2nd𝐹 )
precsexlem.4 ( 𝜑𝐴 No )
precsexlem.5 ( 𝜑 → 0s <s 𝐴 )
precsexlem.6 ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
Assertion precsexlem9 ( ( 𝜑𝐼 ∈ ω ) → ( ∀ 𝑏 ∈ ( 𝐿𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) )

Proof

Step Hyp Ref Expression
1 precsexlem.1 𝐹 = rec ( ( 𝑝 ∈ V ↦ ( 1st𝑝 ) / 𝑙 ( 2nd𝑝 ) / 𝑟 ⟨ ( 𝑙 ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) , ( 𝑟 ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿𝑙 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅𝑟 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ⟩ ) , ⟨ { 0s } , ∅ ⟩ )
2 precsexlem.2 𝐿 = ( 1st𝐹 )
3 precsexlem.3 𝑅 = ( 2nd𝐹 )
4 precsexlem.4 ( 𝜑𝐴 No )
5 precsexlem.5 ( 𝜑 → 0s <s 𝐴 )
6 precsexlem.6 ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
7 fveq2 ( 𝑖 = ∅ → ( 𝐿𝑖 ) = ( 𝐿 ‘ ∅ ) )
8 7 raleqdv ( 𝑖 = ∅ → ( ∀ 𝑏 ∈ ( 𝐿𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ) )
9 fveq2 ( 𝑖 = ∅ → ( 𝑅𝑖 ) = ( 𝑅 ‘ ∅ ) )
10 9 raleqdv ( 𝑖 = ∅ → ( ∀ 𝑐 ∈ ( 𝑅𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) ) )
11 8 10 anbi12d ( 𝑖 = ∅ → ( ( ∀ 𝑏 ∈ ( 𝐿𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) )
12 11 imbi2d ( 𝑖 = ∅ → ( ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ↔ ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) )
13 fveq2 ( 𝑖 = 𝑗 → ( 𝐿𝑖 ) = ( 𝐿𝑗 ) )
14 13 raleqdv ( 𝑖 = 𝑗 → ( ∀ 𝑏 ∈ ( 𝐿𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ) )
15 fveq2 ( 𝑖 = 𝑗 → ( 𝑅𝑖 ) = ( 𝑅𝑗 ) )
16 15 raleqdv ( 𝑖 = 𝑗 → ( ∀ 𝑐 ∈ ( 𝑅𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) )
17 14 16 anbi12d ( 𝑖 = 𝑗 → ( ( ∀ 𝑏 ∈ ( 𝐿𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) )
18 17 imbi2d ( 𝑖 = 𝑗 → ( ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ↔ ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) )
19 fveq2 ( 𝑖 = suc 𝑗 → ( 𝐿𝑖 ) = ( 𝐿 ‘ suc 𝑗 ) )
20 19 raleqdv ( 𝑖 = suc 𝑗 → ( ∀ 𝑏 ∈ ( 𝐿𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑏 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ) )
21 fveq2 ( 𝑖 = suc 𝑗 → ( 𝑅𝑖 ) = ( 𝑅 ‘ suc 𝑗 ) )
22 21 raleqdv ( 𝑖 = suc 𝑗 → ( ∀ 𝑐 ∈ ( 𝑅𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) )
23 20 22 anbi12d ( 𝑖 = suc 𝑗 → ( ( ∀ 𝑏 ∈ ( 𝐿𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) )
24 oveq2 ( 𝑏 = 𝑟 → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s 𝑟 ) )
25 24 breq1d ( 𝑏 = 𝑟 → ( ( 𝐴 ·s 𝑏 ) <s 1s ↔ ( 𝐴 ·s 𝑟 ) <s 1s ) )
26 25 cbvralvw ( ∀ 𝑏 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s )
27 oveq2 ( 𝑐 = 𝑠 → ( 𝐴 ·s 𝑐 ) = ( 𝐴 ·s 𝑠 ) )
28 27 breq2d ( 𝑐 = 𝑠 → ( 1s <s ( 𝐴 ·s 𝑐 ) ↔ 1s <s ( 𝐴 ·s 𝑠 ) ) )
29 28 cbvralvw ( ∀ 𝑐 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) )
30 26 29 anbi12i ( ( ∀ 𝑏 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) )
31 23 30 bitrdi ( 𝑖 = suc 𝑗 → ( ( ∀ 𝑏 ∈ ( 𝐿𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) )
32 31 imbi2d ( 𝑖 = suc 𝑗 → ( ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ↔ ( 𝜑 → ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) ) )
33 fveq2 ( 𝑖 = 𝐼 → ( 𝐿𝑖 ) = ( 𝐿𝐼 ) )
34 33 raleqdv ( 𝑖 = 𝐼 → ( ∀ 𝑏 ∈ ( 𝐿𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑏 ∈ ( 𝐿𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ) )
35 fveq2 ( 𝑖 = 𝐼 → ( 𝑅𝑖 ) = ( 𝑅𝐼 ) )
36 35 raleqdv ( 𝑖 = 𝐼 → ( ∀ 𝑐 ∈ ( 𝑅𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑐 ∈ ( 𝑅𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) )
37 34 36 anbi12d ( 𝑖 = 𝐼 → ( ( ∀ 𝑏 ∈ ( 𝐿𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ ( 𝐿𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) )
38 37 imbi2d ( 𝑖 = 𝐼 → ( ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿𝑖 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑖 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ↔ ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ) )
39 muls01 ( 𝐴 No → ( 𝐴 ·s 0s ) = 0s )
40 4 39 syl ( 𝜑 → ( 𝐴 ·s 0s ) = 0s )
41 0slt1s 0s <s 1s
42 40 41 eqbrtrdi ( 𝜑 → ( 𝐴 ·s 0s ) <s 1s )
43 1 2 3 precsexlem1 ( 𝐿 ‘ ∅ ) = { 0s }
44 43 raleqi ( ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ∀ 𝑏 ∈ { 0s } ( 𝐴 ·s 𝑏 ) <s 1s )
45 0sno 0s No
46 45 elexi 0s ∈ V
47 oveq2 ( 𝑏 = 0s → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s 0s ) )
48 47 breq1d ( 𝑏 = 0s → ( ( 𝐴 ·s 𝑏 ) <s 1s ↔ ( 𝐴 ·s 0s ) <s 1s ) )
49 46 48 ralsn ( ∀ 𝑏 ∈ { 0s } ( 𝐴 ·s 𝑏 ) <s 1s ↔ ( 𝐴 ·s 0s ) <s 1s )
50 44 49 bitri ( ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ↔ ( 𝐴 ·s 0s ) <s 1s )
51 42 50 sylibr ( 𝜑 → ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s )
52 ral0 𝑐 ∈ ∅ 1s <s ( 𝐴 ·s 𝑐 )
53 1 2 3 precsexlem2 ( 𝑅 ‘ ∅ ) = ∅
54 53 raleqi ( ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) ↔ ∀ 𝑐 ∈ ∅ 1s <s ( 𝐴 ·s 𝑐 ) )
55 52 54 mpbir 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 )
56 51 55 jctir ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿 ‘ ∅ ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅 ‘ ∅ ) 1s <s ( 𝐴 ·s 𝑐 ) ) )
57 1 2 3 precsexlem4 ( 𝑗 ∈ ω → ( 𝐿 ‘ suc 𝑗 ) = ( ( 𝐿𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) )
58 57 3ad2ant2 ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝐿 ‘ suc 𝑗 ) = ( ( 𝐿𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) )
59 58 eleq2d ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ↔ 𝑟 ∈ ( ( 𝐿𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ) )
60 elun ( 𝑟 ∈ ( ( 𝐿𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ↔ ( 𝑟 ∈ ( 𝐿𝑗 ) ∨ 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) )
61 elun ( 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ↔ ( 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∨ 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) )
62 vex 𝑟 ∈ V
63 eqeq1 ( 𝑎 = 𝑟 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) )
64 63 2rexbidv ( 𝑎 = 𝑟 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) )
65 62 64 elab ( 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) )
66 eqeq1 ( 𝑎 = 𝑟 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) )
67 66 2rexbidv ( 𝑎 = 𝑟 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) )
68 62 67 elab ( 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) )
69 65 68 orbi12i ( ( 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∨ 𝑟 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) )
70 61 69 bitri ( 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) )
71 70 orbi2i ( ( 𝑟 ∈ ( 𝐿𝑗 ) ∨ 𝑟 ∈ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ↔ ( 𝑟 ∈ ( 𝐿𝑗 ) ∨ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) )
72 60 71 bitri ( 𝑟 ∈ ( ( 𝐿𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) } ) ) ↔ ( 𝑟 ∈ ( 𝐿𝑗 ) ∨ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) )
73 59 72 bitrdi ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ↔ ( 𝑟 ∈ ( 𝐿𝑗 ) ∨ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) ) )
74 simp3l ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s )
75 25 rspccv ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s → ( 𝑟 ∈ ( 𝐿𝑗 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) )
76 74 75 syl ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑟 ∈ ( 𝐿𝑗 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) )
77 4 3ad2ant1 ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → 𝐴 No )
78 77 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝐴 No )
79 1sno 1s No
80 79 a1i ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 1s No )
81 rightssno ( R ‘ 𝐴 ) ⊆ No
82 81 sseli ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝑥𝑅 No )
83 82 adantl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝑥𝑅 No )
84 77 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝐴 No )
85 83 84 subscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → ( 𝑥𝑅 -s 𝐴 ) ∈ No )
86 85 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝑥𝑅 -s 𝐴 ) ∈ No )
87 1 2 3 4 5 6 precsexlem8 ( ( 𝜑𝑗 ∈ ω ) → ( ( 𝐿𝑗 ) ⊆ No ∧ ( 𝑅𝑗 ) ⊆ No ) )
88 87 simpld ( ( 𝜑𝑗 ∈ ω ) → ( 𝐿𝑗 ) ⊆ No )
89 88 3adant3 ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝐿𝑗 ) ⊆ No )
90 89 sselda ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) → 𝑦𝐿 No )
91 90 adantrl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑦𝐿 No )
92 86 91 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ∈ No )
93 80 92 addscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ∈ No )
94 83 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑥𝑅 No )
95 45 a1i ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 0s No )
96 5 3ad2ant1 ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → 0s <s 𝐴 )
97 96 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 0s <s 𝐴 )
98 rightgt ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝐴 <s 𝑥𝑅 )
99 98 adantl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝐴 <s 𝑥𝑅 )
100 95 84 83 97 99 slttrd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 0s <s 𝑥𝑅 )
101 100 sgt0ne0d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝑥𝑅 ≠ 0s )
102 101 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑥𝑅 ≠ 0s )
103 breq2 ( 𝑥𝑂 = 𝑥𝑅 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝑅 ) )
104 oveq1 ( 𝑥𝑂 = 𝑥𝑅 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑥𝑅 ·s 𝑦 ) )
105 104 eqeq1d ( 𝑥𝑂 = 𝑥𝑅 → ( ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ( 𝑥𝑅 ·s 𝑦 ) = 1s ) )
106 105 rexbidv ( 𝑥𝑂 = 𝑥𝑅 → ( ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) )
107 103 106 imbi12d ( 𝑥𝑂 = 𝑥𝑅 → ( ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑥𝑅 → ∃ 𝑦 No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) ) )
108 6 3ad2ant1 ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
109 108 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
110 elun2 ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) → 𝑥𝑅 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
111 110 adantl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
112 107 109 111 rspcdva ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → ( 0s <s 𝑥𝑅 → ∃ 𝑦 No ( 𝑥𝑅 ·s 𝑦 ) = 1s ) )
113 100 112 mpd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → ∃ 𝑦 No ( 𝑥𝑅 ·s 𝑦 ) = 1s )
114 113 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ∃ 𝑦 No ( 𝑥𝑅 ·s 𝑦 ) = 1s )
115 78 93 94 102 114 divsasswd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝑅 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) )
116 oveq2 ( 𝑏 = 𝑦𝐿 → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s 𝑦𝐿 ) )
117 116 breq1d ( 𝑏 = 𝑦𝐿 → ( ( 𝐴 ·s 𝑏 ) <s 1s ↔ ( 𝐴 ·s 𝑦𝐿 ) <s 1s ) )
118 117 rspccva ( ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s𝑦𝐿 ∈ ( 𝐿𝑗 ) ) → ( 𝐴 ·s 𝑦𝐿 ) <s 1s )
119 74 118 sylan ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) → ( 𝐴 ·s 𝑦𝐿 ) <s 1s )
120 119 adantrl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝐿 ) <s 1s )
121 78 91 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝐿 ) ∈ No )
122 84 83 posdifsd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → ( 𝐴 <s 𝑥𝑅 ↔ 0s <s ( 𝑥𝑅 -s 𝐴 ) ) )
123 99 122 mpbid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ) → 0s <s ( 𝑥𝑅 -s 𝐴 ) )
124 123 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 0s <s ( 𝑥𝑅 -s 𝐴 ) )
125 121 80 86 124 sltmul2d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝐴 ·s 𝑦𝐿 ) <s 1s ↔ ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) ) )
126 120 125 mpbid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) )
127 86 mulsridd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) = ( 𝑥𝑅 -s 𝐴 ) )
128 126 127 breqtrd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( 𝑥𝑅 -s 𝐴 ) )
129 86 121 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ∈ No )
130 78 129 94 sltaddsub2d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) <s 𝑥𝑅 ↔ ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( 𝑥𝑅 -s 𝐴 ) ) )
131 128 130 mpbird ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) <s 𝑥𝑅 )
132 78 80 92 addsdid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) )
133 78 mulsridd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s 1s ) = 𝐴 )
134 78 86 91 muls12d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) )
135 133 134 oveq12d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) )
136 132 135 eqtrd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) )
137 94 mulslidd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 1s ·s 𝑥𝑅 ) = 𝑥𝑅 )
138 131 136 137 3brtr4d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) <s ( 1s ·s 𝑥𝑅 ) )
139 78 93 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) ∈ No )
140 100 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 0s <s 𝑥𝑅 )
141 139 80 94 140 114 sltdivmul2wd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝑅 ) <s 1s ↔ ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) <s ( 1s ·s 𝑥𝑅 ) ) )
142 138 141 mpbird ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝑅 ) <s 1s )
143 115 142 eqbrtrrd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) <s 1s )
144 oveq2 ( 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → ( 𝐴 ·s 𝑟 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) )
145 144 breq1d ( 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → ( ( 𝐴 ·s 𝑟 ) <s 1s ↔ ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ) <s 1s ) )
146 143 145 syl5ibrcom ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) )
147 146 rexlimdvva ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) )
148 77 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝐴 No )
149 79 a1i ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 1s No )
150 leftssno ( L ‘ 𝐴 ) ⊆ No
151 elrabi ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → 𝑥𝐿 ∈ ( L ‘ 𝐴 ) )
152 151 adantl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑥𝐿 ∈ ( L ‘ 𝐴 ) )
153 150 152 sselid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑥𝐿 No )
154 77 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝐴 No )
155 153 154 subscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑥𝐿 -s 𝐴 ) ∈ No )
156 155 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝑥𝐿 -s 𝐴 ) ∈ No )
157 87 simprd ( ( 𝜑𝑗 ∈ ω ) → ( 𝑅𝑗 ) ⊆ No )
158 157 3adant3 ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑅𝑗 ) ⊆ No )
159 158 sselda ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) → 𝑦𝑅 No )
160 159 adantrl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑦𝑅 No )
161 156 160 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ∈ No )
162 149 161 addscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ∈ No )
163 153 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑥𝐿 No )
164 breq2 ( 𝑥 = 𝑥𝐿 → ( 0s <s 𝑥 ↔ 0s <s 𝑥𝐿 ) )
165 164 elrab ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ↔ ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∧ 0s <s 𝑥𝐿 ) )
166 165 simprbi ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } → 0s <s 𝑥𝐿 )
167 166 adantl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 0s <s 𝑥𝐿 )
168 167 sgt0ne0d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑥𝐿 ≠ 0s )
169 168 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑥𝐿 ≠ 0s )
170 breq2 ( 𝑥𝑂 = 𝑥𝐿 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝐿 ) )
171 oveq1 ( 𝑥𝑂 = 𝑥𝐿 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑥𝐿 ·s 𝑦 ) )
172 171 eqeq1d ( 𝑥𝑂 = 𝑥𝐿 → ( ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ( 𝑥𝐿 ·s 𝑦 ) = 1s ) )
173 172 rexbidv ( 𝑥𝑂 = 𝑥𝐿 → ( ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ↔ ∃ 𝑦 No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) )
174 170 173 imbi12d ( 𝑥𝑂 = 𝑥𝐿 → ( ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) ↔ ( 0s <s 𝑥𝐿 → ∃ 𝑦 No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) ) )
175 108 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( 0s <s 𝑥𝑂 → ∃ 𝑦 No ( 𝑥𝑂 ·s 𝑦 ) = 1s ) )
176 elun1 ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) → 𝑥𝐿 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
177 152 176 syl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑥𝐿 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
178 174 175 177 rspcdva ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 0s <s 𝑥𝐿 → ∃ 𝑦 No ( 𝑥𝐿 ·s 𝑦 ) = 1s ) )
179 167 178 mpd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ∃ 𝑦 No ( 𝑥𝐿 ·s 𝑦 ) = 1s )
180 179 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ∃ 𝑦 No ( 𝑥𝐿 ·s 𝑦 ) = 1s )
181 148 162 163 169 180 divsasswd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝐿 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) )
182 154 153 subscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝐴 -s 𝑥𝐿 ) ∈ No )
183 182 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 -s 𝑥𝐿 ) ∈ No )
184 183 mulsridd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) = ( 𝐴 -s 𝑥𝐿 ) )
185 simp3r ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) )
186 oveq2 ( 𝑐 = 𝑦𝑅 → ( 𝐴 ·s 𝑐 ) = ( 𝐴 ·s 𝑦𝑅 ) )
187 186 breq2d ( 𝑐 = 𝑦𝑅 → ( 1s <s ( 𝐴 ·s 𝑐 ) ↔ 1s <s ( 𝐴 ·s 𝑦𝑅 ) ) )
188 187 rspccva ( ( ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) → 1s <s ( 𝐴 ·s 𝑦𝑅 ) )
189 185 188 sylan ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) → 1s <s ( 𝐴 ·s 𝑦𝑅 ) )
190 189 adantrl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 1s <s ( 𝐴 ·s 𝑦𝑅 ) )
191 148 160 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝑅 ) ∈ No )
192 leftlt ( 𝑥𝐿 ∈ ( L ‘ 𝐴 ) → 𝑥𝐿 <s 𝐴 )
193 152 192 syl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 𝑥𝐿 <s 𝐴 )
194 153 154 posdifsd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( 𝑥𝐿 <s 𝐴 ↔ 0s <s ( 𝐴 -s 𝑥𝐿 ) ) )
195 193 194 mpbid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → 0s <s ( 𝐴 -s 𝑥𝐿 ) )
196 195 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 0s <s ( 𝐴 -s 𝑥𝐿 ) )
197 149 191 183 196 sltmul2d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 1s <s ( 𝐴 ·s 𝑦𝑅 ) ↔ ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) <s ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) )
198 190 197 mpbid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) <s ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) )
199 184 198 eqbrtrrd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 -s 𝑥𝐿 ) <s ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) )
200 153 154 negsubsdi2d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) = ( 𝐴 -s 𝑥𝐿 ) )
201 200 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) = ( 𝐴 -s 𝑥𝐿 ) )
202 156 191 mulnegs1d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) = ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) )
203 200 oveq1d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) )
204 203 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) )
205 202 204 eqtr3d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) )
206 199 201 205 3brtr4d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) <s ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) )
207 156 191 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ∈ No )
208 207 156 sltnegd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) <s ( 𝑥𝐿 -s 𝐴 ) ↔ ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) <s ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) )
209 206 208 mpbird ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) <s ( 𝑥𝐿 -s 𝐴 ) )
210 148 207 163 sltaddsub2d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) <s 𝑥𝐿 ↔ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) <s ( 𝑥𝐿 -s 𝐴 ) ) )
211 209 210 mpbird ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) <s 𝑥𝐿 )
212 148 149 161 addsdid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) )
213 148 mulsridd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 ·s 1s ) = 𝐴 )
214 148 156 160 muls12d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) )
215 213 214 oveq12d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) )
216 212 215 eqtrd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) )
217 163 mulsridd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝑥𝐿 ·s 1s ) = 𝑥𝐿 )
218 211 216 217 3brtr4d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) <s ( 𝑥𝐿 ·s 1s ) )
219 148 162 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) ∈ No )
220 167 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 0s <s 𝑥𝐿 )
221 219 149 163 220 180 sltdivmulwd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝐿 ) <s 1s ↔ ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) <s ( 𝑥𝐿 ·s 1s ) ) )
222 218 221 mpbird ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝐿 ) <s 1s )
223 181 222 eqbrtrrd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) <s 1s )
224 oveq2 ( 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → ( 𝐴 ·s 𝑟 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) )
225 224 breq1d ( 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → ( ( 𝐴 ·s 𝑟 ) <s 1s ↔ ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) <s 1s ) )
226 223 225 syl5ibrcom ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) )
227 226 rexlimdvva ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) )
228 147 227 jaod ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) → ( 𝐴 ·s 𝑟 ) <s 1s ) )
229 76 228 jaod ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ( 𝑟 ∈ ( 𝐿𝑗 ) ∨ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝑅 ) ∨ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑟 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝐿 ) ) ) → ( 𝐴 ·s 𝑟 ) <s 1s ) )
230 73 229 sylbid ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) → ( 𝐴 ·s 𝑟 ) <s 1s ) )
231 230 ralrimiv ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s )
232 1 2 3 precsexlem5 ( 𝑗 ∈ ω → ( 𝑅 ‘ suc 𝑗 ) = ( ( 𝑅𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) )
233 232 3ad2ant2 ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑅 ‘ suc 𝑗 ) = ( ( 𝑅𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) )
234 233 eleq2d ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) ↔ 𝑠 ∈ ( ( 𝑅𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ) )
235 elun ( 𝑠 ∈ ( ( 𝑅𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ↔ ( 𝑠 ∈ ( 𝑅𝑗 ) ∨ 𝑠 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) )
236 elun ( 𝑠 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ↔ ( 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∨ 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) )
237 vex 𝑠 ∈ V
238 eqeq1 ( 𝑎 = 𝑠 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) )
239 238 2rexbidv ( 𝑎 = 𝑠 → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) )
240 237 239 elab ( 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ↔ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) )
241 eqeq1 ( 𝑎 = 𝑠 → ( 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) )
242 241 2rexbidv ( 𝑎 = 𝑠 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) )
243 237 242 elab ( 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) )
244 240 243 orbi12i ( ( 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∨ 𝑠 ∈ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ↔ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) )
245 236 244 bitri ( 𝑠 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ↔ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) )
246 245 orbi2i ( ( 𝑠 ∈ ( 𝑅𝑗 ) ∨ 𝑠 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ↔ ( 𝑠 ∈ ( 𝑅𝑗 ) ∨ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) )
247 235 246 bitri ( 𝑠 ∈ ( ( 𝑅𝑗 ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑎 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) } ) ) ↔ ( 𝑠 ∈ ( 𝑅𝑗 ) ∨ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) )
248 234 247 bitrdi ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) ↔ ( 𝑠 ∈ ( 𝑅𝑗 ) ∨ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) ) )
249 28 rspccv ( ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) → ( 𝑠 ∈ ( 𝑅𝑗 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) )
250 185 249 syl ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑠 ∈ ( 𝑅𝑗 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) )
251 119 adantrl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝐿 ) <s 1s )
252 77 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝐴 No )
253 90 adantrl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑦𝐿 No )
254 252 253 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝐿 ) ∈ No )
255 79 a1i ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 1s No )
256 182 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 -s 𝑥𝐿 ) ∈ No )
257 195 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 0s <s ( 𝐴 -s 𝑥𝐿 ) )
258 254 255 256 257 sltmul2d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝐴 ·s 𝑦𝐿 ) <s 1s ↔ ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) ) )
259 251 258 mpbid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) )
260 256 mulsridd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝐴 -s 𝑥𝐿 ) ·s 1s ) = ( 𝐴 -s 𝑥𝐿 ) )
261 259 260 breqtrd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) <s ( 𝐴 -s 𝑥𝐿 ) )
262 155 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝑥𝐿 -s 𝐴 ) ∈ No )
263 262 254 mulnegs1d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) = ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) )
264 200 oveq1d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) )
265 264 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) )
266 263 265 eqtr3d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) = ( ( 𝐴 -s 𝑥𝐿 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) )
267 200 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) = ( 𝐴 -s 𝑥𝐿 ) )
268 261 266 267 3brtr4d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) <s ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) )
269 262 254 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ∈ No )
270 262 269 sltnegd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) <s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ↔ ( -us ‘ ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) <s ( -us ‘ ( 𝑥𝐿 -s 𝐴 ) ) ) )
271 268 270 mpbird ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝑥𝐿 -s 𝐴 ) <s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) )
272 153 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑥𝐿 No )
273 272 252 269 sltsubadd2d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) <s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ↔ 𝑥𝐿 <s ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) ) )
274 271 273 mpbid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑥𝐿 <s ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) )
275 272 mulslidd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 1s ·s 𝑥𝐿 ) = 𝑥𝐿 )
276 262 253 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ∈ No )
277 252 255 276 addsdid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) )
278 252 mulsridd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s 1s ) = 𝐴 )
279 252 262 253 muls12d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) = ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) )
280 278 279 oveq12d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) )
281 277 280 eqtrd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) = ( 𝐴 +s ( ( 𝑥𝐿 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝐿 ) ) ) )
282 274 275 281 3brtr4d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 1s ·s 𝑥𝐿 ) <s ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) )
283 255 276 addscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ∈ No )
284 252 283 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) ∈ No )
285 167 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 0s <s 𝑥𝐿 )
286 179 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ∃ 𝑦 No ( 𝑥𝐿 ·s 𝑦 ) = 1s )
287 255 284 272 285 286 sltmuldivwd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 1s ·s 𝑥𝐿 ) <s ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) ↔ 1s <s ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝐿 ) ) )
288 282 287 mpbid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 1s <s ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝐿 ) )
289 168 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 𝑥𝐿 ≠ 0s )
290 252 283 272 289 286 divsasswd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) ) /su 𝑥𝐿 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) )
291 288 290 breqtrd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → 1s <s ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) )
292 oveq2 ( 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → ( 𝐴 ·s 𝑠 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) )
293 292 breq2d ( 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → ( 1s <s ( 𝐴 ·s 𝑠 ) ↔ 1s <s ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ) ) )
294 291 293 syl5ibrcom ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∧ 𝑦𝐿 ∈ ( 𝐿𝑗 ) ) ) → ( 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) )
295 294 rexlimdvva ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) )
296 85 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝑥𝑅 -s 𝐴 ) ∈ No )
297 296 mulsridd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) = ( 𝑥𝑅 -s 𝐴 ) )
298 189 adantrl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 1s <s ( 𝐴 ·s 𝑦𝑅 ) )
299 79 a1i ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 1s No )
300 77 adantr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝐴 No )
301 159 adantrl ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑦𝑅 No )
302 300 301 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 ·s 𝑦𝑅 ) ∈ No )
303 123 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 0s <s ( 𝑥𝑅 -s 𝐴 ) )
304 299 302 296 303 sltmul2d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 1s <s ( 𝐴 ·s 𝑦𝑅 ) ↔ ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) )
305 298 304 mpbid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 1s ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) )
306 297 305 eqbrtrrd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝑥𝑅 -s 𝐴 ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) )
307 83 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑥𝑅 No )
308 296 302 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ∈ No )
309 307 300 308 sltsubadd2d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) <s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ↔ 𝑥𝑅 <s ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) ) )
310 306 309 mpbid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑥𝑅 <s ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) )
311 307 mulslidd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 1s ·s 𝑥𝑅 ) = 𝑥𝑅 )
312 296 301 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ∈ No )
313 300 299 312 addsdid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) )
314 300 mulsridd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 ·s 1s ) = 𝐴 )
315 300 296 301 muls12d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) = ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) )
316 314 315 oveq12d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝐴 ·s 1s ) +s ( 𝐴 ·s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) )
317 313 316 eqtrd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) = ( 𝐴 +s ( ( 𝑥𝑅 -s 𝐴 ) ·s ( 𝐴 ·s 𝑦𝑅 ) ) ) )
318 310 311 317 3brtr4d ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 1s ·s 𝑥𝑅 ) <s ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) )
319 299 312 addscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ∈ No )
320 300 319 mulscld ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) ∈ No )
321 100 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 0s <s 𝑥𝑅 )
322 113 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ∃ 𝑦 No ( 𝑥𝑅 ·s 𝑦 ) = 1s )
323 299 320 307 321 322 sltmuldivwd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 1s ·s 𝑥𝑅 ) <s ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) ↔ 1s <s ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝑅 ) ) )
324 318 323 mpbid ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 1s <s ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝑅 ) )
325 101 adantrr ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 𝑥𝑅 ≠ 0s )
326 300 319 307 325 322 divsasswd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( ( 𝐴 ·s ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) ) /su 𝑥𝑅 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) )
327 324 326 breqtrd ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → 1s <s ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) )
328 oveq2 ( 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → ( 𝐴 ·s 𝑠 ) = ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) )
329 328 breq2d ( 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → ( 1s <s ( 𝐴 ·s 𝑠 ) ↔ 1s <s ( 𝐴 ·s ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) )
330 327 329 syl5ibrcom ( ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) ∧ ( 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∧ 𝑦𝑅 ∈ ( 𝑅𝑗 ) ) ) → ( 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) )
331 330 rexlimdvva ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) )
332 295 331 jaod ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) → 1s <s ( 𝐴 ·s 𝑠 ) ) )
333 250 332 jaod ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ( 𝑠 ∈ ( 𝑅𝑗 ) ∨ ( ∃ 𝑥𝐿 ∈ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ∃ 𝑦𝐿 ∈ ( 𝐿𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝐿 -s 𝐴 ) ·s 𝑦𝐿 ) ) /su 𝑥𝐿 ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( 𝑅𝑗 ) 𝑠 = ( ( 1s +s ( ( 𝑥𝑅 -s 𝐴 ) ·s 𝑦𝑅 ) ) /su 𝑥𝑅 ) ) ) → 1s <s ( 𝐴 ·s 𝑠 ) ) )
334 248 333 sylbid ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) → 1s <s ( 𝐴 ·s 𝑠 ) ) )
335 334 ralrimiv ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) )
336 231 335 jca ( ( 𝜑𝑗 ∈ ω ∧ ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) )
337 336 3exp ( 𝜑 → ( 𝑗 ∈ ω → ( ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) → ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) ) )
338 337 com12 ( 𝑗 ∈ ω → ( 𝜑 → ( ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) → ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) ) )
339 338 a2d ( 𝑗 ∈ ω → ( ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿𝑗 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝑗 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) → ( 𝜑 → ( ∀ 𝑟 ∈ ( 𝐿 ‘ suc 𝑗 ) ( 𝐴 ·s 𝑟 ) <s 1s ∧ ∀ 𝑠 ∈ ( 𝑅 ‘ suc 𝑗 ) 1s <s ( 𝐴 ·s 𝑠 ) ) ) ) )
340 12 18 32 38 56 339 finds ( 𝐼 ∈ ω → ( 𝜑 → ( ∀ 𝑏 ∈ ( 𝐿𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) ) )
341 340 impcom ( ( 𝜑𝐼 ∈ ω ) → ( ∀ 𝑏 ∈ ( 𝐿𝐼 ) ( 𝐴 ·s 𝑏 ) <s 1s ∧ ∀ 𝑐 ∈ ( 𝑅𝐼 ) 1s <s ( 𝐴 ·s 𝑐 ) ) )