| Step |
Hyp |
Ref |
Expression |
| 1 |
|
precsexlem.1 |
|- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) |
| 2 |
|
precsexlem.2 |
|- L = ( 1st o. F ) |
| 3 |
|
precsexlem.3 |
|- R = ( 2nd o. F ) |
| 4 |
|
precsexlem.4 |
|- ( ph -> A e. No ) |
| 5 |
|
precsexlem.5 |
|- ( ph -> 0s |
| 6 |
|
precsexlem.6 |
|- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
| 7 |
|
fveq2 |
|- ( i = (/) -> ( L ` i ) = ( L ` (/) ) ) |
| 8 |
7
|
raleqdv |
|- ( i = (/) -> ( A. b e. ( L ` i ) ( A x.s b ) A. b e. ( L ` (/) ) ( A x.s b ) |
| 9 |
|
fveq2 |
|- ( i = (/) -> ( R ` i ) = ( R ` (/) ) ) |
| 10 |
9
|
raleqdv |
|- ( i = (/) -> ( A. c e. ( R ` i ) 1s A. c e. ( R ` (/) ) 1s |
| 11 |
8 10
|
anbi12d |
|- ( i = (/) -> ( ( A. b e. ( L ` i ) ( A x.s b ) ( A. b e. ( L ` (/) ) ( A x.s b ) |
| 12 |
11
|
imbi2d |
|- ( i = (/) -> ( ( ph -> ( A. b e. ( L ` i ) ( A x.s b ) ( ph -> ( A. b e. ( L ` (/) ) ( A x.s b ) |
| 13 |
|
fveq2 |
|- ( i = j -> ( L ` i ) = ( L ` j ) ) |
| 14 |
13
|
raleqdv |
|- ( i = j -> ( A. b e. ( L ` i ) ( A x.s b ) A. b e. ( L ` j ) ( A x.s b ) |
| 15 |
|
fveq2 |
|- ( i = j -> ( R ` i ) = ( R ` j ) ) |
| 16 |
15
|
raleqdv |
|- ( i = j -> ( A. c e. ( R ` i ) 1s A. c e. ( R ` j ) 1s |
| 17 |
14 16
|
anbi12d |
|- ( i = j -> ( ( A. b e. ( L ` i ) ( A x.s b ) ( A. b e. ( L ` j ) ( A x.s b ) |
| 18 |
17
|
imbi2d |
|- ( i = j -> ( ( ph -> ( A. b e. ( L ` i ) ( A x.s b ) ( ph -> ( A. b e. ( L ` j ) ( A x.s b ) |
| 19 |
|
fveq2 |
|- ( i = suc j -> ( L ` i ) = ( L ` suc j ) ) |
| 20 |
19
|
raleqdv |
|- ( i = suc j -> ( A. b e. ( L ` i ) ( A x.s b ) A. b e. ( L ` suc j ) ( A x.s b ) |
| 21 |
|
fveq2 |
|- ( i = suc j -> ( R ` i ) = ( R ` suc j ) ) |
| 22 |
21
|
raleqdv |
|- ( i = suc j -> ( A. c e. ( R ` i ) 1s A. c e. ( R ` suc j ) 1s |
| 23 |
20 22
|
anbi12d |
|- ( i = suc j -> ( ( A. b e. ( L ` i ) ( A x.s b ) ( A. b e. ( L ` suc j ) ( A x.s b ) |
| 24 |
|
oveq2 |
|- ( b = r -> ( A x.s b ) = ( A x.s r ) ) |
| 25 |
24
|
breq1d |
|- ( b = r -> ( ( A x.s b ) ( A x.s r ) |
| 26 |
25
|
cbvralvw |
|- ( A. b e. ( L ` suc j ) ( A x.s b ) A. r e. ( L ` suc j ) ( A x.s r ) |
| 27 |
|
oveq2 |
|- ( c = s -> ( A x.s c ) = ( A x.s s ) ) |
| 28 |
27
|
breq2d |
|- ( c = s -> ( 1s 1s |
| 29 |
28
|
cbvralvw |
|- ( A. c e. ( R ` suc j ) 1s A. s e. ( R ` suc j ) 1s |
| 30 |
26 29
|
anbi12i |
|- ( ( A. b e. ( L ` suc j ) ( A x.s b ) ( A. r e. ( L ` suc j ) ( A x.s r ) |
| 31 |
23 30
|
bitrdi |
|- ( i = suc j -> ( ( A. b e. ( L ` i ) ( A x.s b ) ( A. r e. ( L ` suc j ) ( A x.s r ) |
| 32 |
31
|
imbi2d |
|- ( i = suc j -> ( ( ph -> ( A. b e. ( L ` i ) ( A x.s b ) ( ph -> ( A. r e. ( L ` suc j ) ( A x.s r ) |
| 33 |
|
fveq2 |
|- ( i = I -> ( L ` i ) = ( L ` I ) ) |
| 34 |
33
|
raleqdv |
|- ( i = I -> ( A. b e. ( L ` i ) ( A x.s b ) A. b e. ( L ` I ) ( A x.s b ) |
| 35 |
|
fveq2 |
|- ( i = I -> ( R ` i ) = ( R ` I ) ) |
| 36 |
35
|
raleqdv |
|- ( i = I -> ( A. c e. ( R ` i ) 1s A. c e. ( R ` I ) 1s |
| 37 |
34 36
|
anbi12d |
|- ( i = I -> ( ( A. b e. ( L ` i ) ( A x.s b ) ( A. b e. ( L ` I ) ( A x.s b ) |
| 38 |
37
|
imbi2d |
|- ( i = I -> ( ( ph -> ( A. b e. ( L ` i ) ( A x.s b ) ( ph -> ( A. b e. ( L ` I ) ( A x.s b ) |
| 39 |
|
muls01 |
|- ( A e. No -> ( A x.s 0s ) = 0s ) |
| 40 |
4 39
|
syl |
|- ( ph -> ( A x.s 0s ) = 0s ) |
| 41 |
|
0slt1s |
|- 0s |
| 42 |
40 41
|
eqbrtrdi |
|- ( ph -> ( A x.s 0s ) |
| 43 |
1 2 3
|
precsexlem1 |
|- ( L ` (/) ) = { 0s } |
| 44 |
43
|
raleqi |
|- ( A. b e. ( L ` (/) ) ( A x.s b ) A. b e. { 0s } ( A x.s b ) |
| 45 |
|
0sno |
|- 0s e. No |
| 46 |
45
|
elexi |
|- 0s e. _V |
| 47 |
|
oveq2 |
|- ( b = 0s -> ( A x.s b ) = ( A x.s 0s ) ) |
| 48 |
47
|
breq1d |
|- ( b = 0s -> ( ( A x.s b ) ( A x.s 0s ) |
| 49 |
46 48
|
ralsn |
|- ( A. b e. { 0s } ( A x.s b ) ( A x.s 0s ) |
| 50 |
44 49
|
bitri |
|- ( A. b e. ( L ` (/) ) ( A x.s b ) ( A x.s 0s ) |
| 51 |
42 50
|
sylibr |
|- ( ph -> A. b e. ( L ` (/) ) ( A x.s b ) |
| 52 |
|
ral0 |
|- A. c e. (/) 1s |
| 53 |
1 2 3
|
precsexlem2 |
|- ( R ` (/) ) = (/) |
| 54 |
53
|
raleqi |
|- ( A. c e. ( R ` (/) ) 1s A. c e. (/) 1s |
| 55 |
52 54
|
mpbir |
|- A. c e. ( R ` (/) ) 1s |
| 56 |
51 55
|
jctir |
|- ( ph -> ( A. b e. ( L ` (/) ) ( A x.s b ) |
| 57 |
1 2 3
|
precsexlem4 |
|- ( j e. _om -> ( L ` suc j ) = ( ( L ` j ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 58 |
57
|
3ad2ant2 |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( L ` suc j ) = ( ( L ` j ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 59 |
58
|
eleq2d |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( r e. ( L ` suc j ) <-> r e. ( ( L ` j ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 60 |
|
elun |
|- ( r e. ( ( L ` j ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( r e. ( L ` j ) \/ r e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 61 |
|
elun |
|- ( r e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( r e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } \/ r e. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 62 |
|
vex |
|- r e. _V |
| 63 |
|
eqeq1 |
|- ( a = r -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
| 64 |
63
|
2rexbidv |
|- ( a = r -> ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
| 65 |
62 64
|
elab |
|- ( r e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) |
| 66 |
|
eqeq1 |
|- ( a = r -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> r = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) ) |
| 67 |
66
|
2rexbidv |
|- ( a = r -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
| 68 |
62 67
|
elab |
|- ( r e. { a | E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
| 69 |
65 68
|
orbi12i |
|- ( ( r e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } \/ r e. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) \/ E. xL e. { x e. ( _Left ` A ) | 0s |
| 70 |
61 69
|
bitri |
|- ( r e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) \/ E. xL e. { x e. ( _Left ` A ) | 0s |
| 71 |
70
|
orbi2i |
|- ( ( r e. ( L ` j ) \/ r e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( r e. ( L ` j ) \/ ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) \/ E. xL e. { x e. ( _Left ` A ) | 0s |
| 72 |
60 71
|
bitri |
|- ( r e. ( ( L ` j ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( r e. ( L ` j ) \/ ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) \/ E. xL e. { x e. ( _Left ` A ) | 0s |
| 73 |
59 72
|
bitrdi |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( r e. ( L ` suc j ) <-> ( r e. ( L ` j ) \/ ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) \/ E. xL e. { x e. ( _Left ` A ) | 0s |
| 74 |
|
simp3l |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A. b e. ( L ` j ) ( A x.s b ) |
| 75 |
25
|
rspccv |
|- ( A. b e. ( L ` j ) ( A x.s b ) ( r e. ( L ` j ) -> ( A x.s r ) |
| 76 |
74 75
|
syl |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( r e. ( L ` j ) -> ( A x.s r ) |
| 77 |
4
|
3ad2ant1 |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A e. No ) |
| 78 |
77
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A e. No ) |
| 79 |
|
1sno |
|- 1s e. No |
| 80 |
79
|
a1i |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s e. No ) |
| 81 |
|
rightssno |
|- ( _Right ` A ) C_ No |
| 82 |
81
|
sseli |
|- ( xR e. ( _Right ` A ) -> xR e. No ) |
| 83 |
82
|
adantl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR e. No ) |
| 84 |
77
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A e. No ) |
| 85 |
83 84
|
subscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xR -s A ) e. No ) |
| 86 |
85
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xR -s A ) e. No ) |
| 87 |
1 2 3 4 5 6
|
precsexlem8 |
|- ( ( ph /\ j e. _om ) -> ( ( L ` j ) C_ No /\ ( R ` j ) C_ No ) ) |
| 88 |
87
|
simpld |
|- ( ( ph /\ j e. _om ) -> ( L ` j ) C_ No ) |
| 89 |
88
|
3adant3 |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( L ` j ) C_ No ) |
| 90 |
89
|
sselda |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) yL e. No ) |
| 91 |
90
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) yL e. No ) |
| 92 |
86 91
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s yL ) e. No ) |
| 93 |
80 92
|
addscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s +s ( ( xR -s A ) x.s yL ) ) e. No ) |
| 94 |
83
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR e. No ) |
| 95 |
45
|
a1i |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s e. No ) |
| 96 |
5
|
3ad2ant1 |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
| 97 |
96
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
| 98 |
|
breq2 |
|- ( xO = xR -> ( A A |
| 99 |
|
rightval |
|- ( _Right ` A ) = { xO e. ( _Old ` ( bday ` A ) ) | A |
| 100 |
98 99
|
elrab2 |
|- ( xR e. ( _Right ` A ) <-> ( xR e. ( _Old ` ( bday ` A ) ) /\ A |
| 101 |
100
|
simprbi |
|- ( xR e. ( _Right ` A ) -> A |
| 102 |
101
|
adantl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A |
| 103 |
95 84 83 97 102
|
slttrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
| 104 |
103
|
sgt0ne0d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR =/= 0s ) |
| 105 |
104
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR =/= 0s ) |
| 106 |
|
breq2 |
|- ( xO = xR -> ( 0s 0s |
| 107 |
|
oveq1 |
|- ( xO = xR -> ( xO x.s y ) = ( xR x.s y ) ) |
| 108 |
107
|
eqeq1d |
|- ( xO = xR -> ( ( xO x.s y ) = 1s <-> ( xR x.s y ) = 1s ) ) |
| 109 |
108
|
rexbidv |
|- ( xO = xR -> ( E. y e. No ( xO x.s y ) = 1s <-> E. y e. No ( xR x.s y ) = 1s ) ) |
| 110 |
106 109
|
imbi12d |
|- ( xO = xR -> ( ( 0s E. y e. No ( xO x.s y ) = 1s ) <-> ( 0s E. y e. No ( xR x.s y ) = 1s ) ) ) |
| 111 |
6
|
3ad2ant1 |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
| 112 |
111
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
| 113 |
|
elun2 |
|- ( xR e. ( _Right ` A ) -> xR e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
| 114 |
113
|
adantl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
| 115 |
110 112 114
|
rspcdva |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 0s E. y e. No ( xR x.s y ) = 1s ) ) |
| 116 |
103 115
|
mpd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) E. y e. No ( xR x.s y ) = 1s ) |
| 117 |
116
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) E. y e. No ( xR x.s y ) = 1s ) |
| 118 |
78 93 94 105 117
|
divsasswd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) /su xR ) = ( A x.s ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
| 119 |
|
oveq2 |
|- ( b = yL -> ( A x.s b ) = ( A x.s yL ) ) |
| 120 |
119
|
breq1d |
|- ( b = yL -> ( ( A x.s b ) ( A x.s yL ) |
| 121 |
120
|
rspccva |
|- ( ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yL ) |
| 122 |
74 121
|
sylan |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yL ) |
| 123 |
122
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yL ) |
| 124 |
78 91
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yL ) e. No ) |
| 125 |
84 83
|
posdifsd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A 0s |
| 126 |
102 125
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
| 127 |
126
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
| 128 |
124 80 86 127
|
sltmul2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s yL ) ( ( xR -s A ) x.s ( A x.s yL ) ) |
| 129 |
123 128
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s ( A x.s yL ) ) |
| 130 |
86
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s 1s ) = ( xR -s A ) ) |
| 131 |
129 130
|
breqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s ( A x.s yL ) ) |
| 132 |
86 124
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s ( A x.s yL ) ) e. No ) |
| 133 |
78 132 94
|
sltaddsub2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A +s ( ( xR -s A ) x.s ( A x.s yL ) ) ) ( ( xR -s A ) x.s ( A x.s yL ) ) |
| 134 |
131 133
|
mpbird |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A +s ( ( xR -s A ) x.s ( A x.s yL ) ) ) |
| 135 |
78 80 92
|
addsdid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) = ( ( A x.s 1s ) +s ( A x.s ( ( xR -s A ) x.s yL ) ) ) ) |
| 136 |
78
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s 1s ) = A ) |
| 137 |
78 86 91
|
muls12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( ( xR -s A ) x.s yL ) ) = ( ( xR -s A ) x.s ( A x.s yL ) ) ) |
| 138 |
136 137
|
oveq12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s 1s ) +s ( A x.s ( ( xR -s A ) x.s yL ) ) ) = ( A +s ( ( xR -s A ) x.s ( A x.s yL ) ) ) ) |
| 139 |
135 138
|
eqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) = ( A +s ( ( xR -s A ) x.s ( A x.s yL ) ) ) ) |
| 140 |
94
|
mulslidd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s x.s xR ) = xR ) |
| 141 |
134 139 140
|
3brtr4d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) |
| 142 |
78 93
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) e. No ) |
| 143 |
103
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
| 144 |
142 80 94 143 117
|
sltdivmul2wd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) /su xR ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) |
| 145 |
141 144
|
mpbird |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s ( 1s +s ( ( xR -s A ) x.s yL ) ) ) /su xR ) |
| 146 |
118 145
|
eqbrtrrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) |
| 147 |
|
oveq2 |
|- ( r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) -> ( A x.s r ) = ( A x.s ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) |
| 148 |
147
|
breq1d |
|- ( r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) -> ( ( A x.s r ) ( A x.s ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) |
| 149 |
146 148
|
syl5ibrcom |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) -> ( A x.s r ) |
| 150 |
149
|
rexlimdvva |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) -> ( A x.s r ) |
| 151 |
77
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A e. No ) |
| 152 |
79
|
a1i |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s e. No ) |
| 153 |
|
leftssno |
|- ( _Left ` A ) C_ No |
| 154 |
|
elrabi |
|- ( xL e. { x e. ( _Left ` A ) | 0s xL e. ( _Left ` A ) ) |
| 155 |
154
|
adantl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL e. ( _Left ` A ) ) |
| 156 |
153 155
|
sselid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL e. No ) |
| 157 |
77
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A e. No ) |
| 158 |
156 157
|
subscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xL -s A ) e. No ) |
| 159 |
158
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xL -s A ) e. No ) |
| 160 |
87
|
simprd |
|- ( ( ph /\ j e. _om ) -> ( R ` j ) C_ No ) |
| 161 |
160
|
3adant3 |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( R ` j ) C_ No ) |
| 162 |
161
|
sselda |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) yR e. No ) |
| 163 |
162
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) yR e. No ) |
| 164 |
159 163
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xL -s A ) x.s yR ) e. No ) |
| 165 |
152 164
|
addscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s +s ( ( xL -s A ) x.s yR ) ) e. No ) |
| 166 |
156
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL e. No ) |
| 167 |
|
breq2 |
|- ( x = xL -> ( 0s 0s |
| 168 |
167
|
elrab |
|- ( xL e. { x e. ( _Left ` A ) | 0s ( xL e. ( _Left ` A ) /\ 0s |
| 169 |
168
|
simprbi |
|- ( xL e. { x e. ( _Left ` A ) | 0s 0s |
| 170 |
169
|
adantl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
| 171 |
170
|
sgt0ne0d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL =/= 0s ) |
| 172 |
171
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL =/= 0s ) |
| 173 |
|
breq2 |
|- ( xO = xL -> ( 0s 0s |
| 174 |
|
oveq1 |
|- ( xO = xL -> ( xO x.s y ) = ( xL x.s y ) ) |
| 175 |
174
|
eqeq1d |
|- ( xO = xL -> ( ( xO x.s y ) = 1s <-> ( xL x.s y ) = 1s ) ) |
| 176 |
175
|
rexbidv |
|- ( xO = xL -> ( E. y e. No ( xO x.s y ) = 1s <-> E. y e. No ( xL x.s y ) = 1s ) ) |
| 177 |
173 176
|
imbi12d |
|- ( xO = xL -> ( ( 0s E. y e. No ( xO x.s y ) = 1s ) <-> ( 0s E. y e. No ( xL x.s y ) = 1s ) ) ) |
| 178 |
111
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) |
| 179 |
|
elun1 |
|- ( xL e. ( _Left ` A ) -> xL e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
| 180 |
155 179
|
syl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
| 181 |
177 178 180
|
rspcdva |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 0s E. y e. No ( xL x.s y ) = 1s ) ) |
| 182 |
170 181
|
mpd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) E. y e. No ( xL x.s y ) = 1s ) |
| 183 |
182
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) E. y e. No ( xL x.s y ) = 1s ) |
| 184 |
151 165 166 172 183
|
divsasswd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) /su xL ) = ( A x.s ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) ) |
| 185 |
157 156
|
subscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A -s xL ) e. No ) |
| 186 |
185
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A -s xL ) e. No ) |
| 187 |
186
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A -s xL ) x.s 1s ) = ( A -s xL ) ) |
| 188 |
|
simp3r |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A. c e. ( R ` j ) 1s |
| 189 |
|
oveq2 |
|- ( c = yR -> ( A x.s c ) = ( A x.s yR ) ) |
| 190 |
189
|
breq2d |
|- ( c = yR -> ( 1s 1s |
| 191 |
190
|
rspccva |
|- ( ( A. c e. ( R ` j ) 1s 1s |
| 192 |
188 191
|
sylan |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s |
| 193 |
192
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s |
| 194 |
151 163
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yR ) e. No ) |
| 195 |
|
breq1 |
|- ( xO = xL -> ( xO xL |
| 196 |
|
leftval |
|- ( _Left ` A ) = { xO e. ( _Old ` ( bday ` A ) ) | xO |
| 197 |
195 196
|
elrab2 |
|- ( xL e. ( _Left ` A ) <-> ( xL e. ( _Old ` ( bday ` A ) ) /\ xL |
| 198 |
197
|
simprbi |
|- ( xL e. ( _Left ` A ) -> xL |
| 199 |
155 198
|
syl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL |
| 200 |
156 157
|
posdifsd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xL 0s |
| 201 |
199 200
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
| 202 |
201
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
| 203 |
152 194 186 202
|
sltmul2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s ( ( A -s xL ) x.s 1s ) |
| 204 |
193 203
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A -s xL ) x.s 1s ) |
| 205 |
187 204
|
eqbrtrrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A -s xL ) |
| 206 |
156 157
|
negsubsdi2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( -us ` ( xL -s A ) ) = ( A -s xL ) ) |
| 207 |
206
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( -us ` ( xL -s A ) ) = ( A -s xL ) ) |
| 208 |
159 194
|
mulnegs1d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( -us ` ( xL -s A ) ) x.s ( A x.s yR ) ) = ( -us ` ( ( xL -s A ) x.s ( A x.s yR ) ) ) ) |
| 209 |
206
|
oveq1d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( -us ` ( xL -s A ) ) x.s ( A x.s yR ) ) = ( ( A -s xL ) x.s ( A x.s yR ) ) ) |
| 210 |
209
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( -us ` ( xL -s A ) ) x.s ( A x.s yR ) ) = ( ( A -s xL ) x.s ( A x.s yR ) ) ) |
| 211 |
208 210
|
eqtr3d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( -us ` ( ( xL -s A ) x.s ( A x.s yR ) ) ) = ( ( A -s xL ) x.s ( A x.s yR ) ) ) |
| 212 |
205 207 211
|
3brtr4d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( -us ` ( xL -s A ) ) |
| 213 |
159 194
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xL -s A ) x.s ( A x.s yR ) ) e. No ) |
| 214 |
213 159
|
sltnegd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( ( xL -s A ) x.s ( A x.s yR ) ) ( -us ` ( xL -s A ) ) |
| 215 |
212 214
|
mpbird |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xL -s A ) x.s ( A x.s yR ) ) |
| 216 |
151 213 166
|
sltaddsub2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A +s ( ( xL -s A ) x.s ( A x.s yR ) ) ) ( ( xL -s A ) x.s ( A x.s yR ) ) |
| 217 |
215 216
|
mpbird |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A +s ( ( xL -s A ) x.s ( A x.s yR ) ) ) |
| 218 |
151 152 164
|
addsdid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) = ( ( A x.s 1s ) +s ( A x.s ( ( xL -s A ) x.s yR ) ) ) ) |
| 219 |
151
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s 1s ) = A ) |
| 220 |
151 159 163
|
muls12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( ( xL -s A ) x.s yR ) ) = ( ( xL -s A ) x.s ( A x.s yR ) ) ) |
| 221 |
219 220
|
oveq12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s 1s ) +s ( A x.s ( ( xL -s A ) x.s yR ) ) ) = ( A +s ( ( xL -s A ) x.s ( A x.s yR ) ) ) ) |
| 222 |
218 221
|
eqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) = ( A +s ( ( xL -s A ) x.s ( A x.s yR ) ) ) ) |
| 223 |
166
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xL x.s 1s ) = xL ) |
| 224 |
217 222 223
|
3brtr4d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) |
| 225 |
151 165
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) e. No ) |
| 226 |
170
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
| 227 |
225 152 166 226 183
|
sltdivmulwd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) /su xL ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) |
| 228 |
224 227
|
mpbird |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s ( 1s +s ( ( xL -s A ) x.s yR ) ) ) /su xL ) |
| 229 |
184 228
|
eqbrtrrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) |
| 230 |
|
oveq2 |
|- ( r = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) -> ( A x.s r ) = ( A x.s ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) ) |
| 231 |
230
|
breq1d |
|- ( r = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) -> ( ( A x.s r ) ( A x.s ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) |
| 232 |
229 231
|
syl5ibrcom |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( r = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) -> ( A x.s r ) |
| 233 |
232
|
rexlimdvva |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( E. xL e. { x e. ( _Left ` A ) | 0s ( A x.s r ) |
| 234 |
150 233
|
jaod |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) \/ E. xL e. { x e. ( _Left ` A ) | 0s ( A x.s r ) |
| 235 |
76 234
|
jaod |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( r e. ( L ` j ) \/ ( E. xR e. ( _Right ` A ) E. yL e. ( L ` j ) r = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) \/ E. xL e. { x e. ( _Left ` A ) | 0s ( A x.s r ) |
| 236 |
73 235
|
sylbid |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( r e. ( L ` suc j ) -> ( A x.s r ) |
| 237 |
236
|
ralrimiv |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A. r e. ( L ` suc j ) ( A x.s r ) |
| 238 |
1 2 3
|
precsexlem5 |
|- ( j e. _om -> ( R ` suc j ) = ( ( R ` j ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 239 |
238
|
3ad2ant2 |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( R ` suc j ) = ( ( R ` j ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 240 |
239
|
eleq2d |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( s e. ( R ` suc j ) <-> s e. ( ( R ` j ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 241 |
|
elun |
|- ( s e. ( ( R ` j ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( s e. ( R ` j ) \/ s e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 242 |
|
elun |
|- ( s e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( s e. { a | E. xL e. { x e. ( _Left ` A ) | 0s |
| 243 |
|
vex |
|- s e. _V |
| 244 |
|
eqeq1 |
|- ( a = s -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> s = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) ) ) |
| 245 |
244
|
2rexbidv |
|- ( a = s -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
| 246 |
243 245
|
elab |
|- ( s e. { a | E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s |
| 247 |
|
eqeq1 |
|- ( a = s -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> s = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
| 248 |
247
|
2rexbidv |
|- ( a = s -> ( E. xR e. ( _Right ` A ) E. yR e. ( R ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` j ) s = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
| 249 |
243 248
|
elab |
|- ( s e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` j ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` j ) s = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) |
| 250 |
246 249
|
orbi12i |
|- ( ( s e. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( E. xL e. { x e. ( _Left ` A ) | 0s |
| 251 |
242 250
|
bitri |
|- ( s e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( E. xL e. { x e. ( _Left ` A ) | 0s |
| 252 |
251
|
orbi2i |
|- ( ( s e. ( R ` j ) \/ s e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( s e. ( R ` j ) \/ ( E. xL e. { x e. ( _Left ` A ) | 0s |
| 253 |
241 252
|
bitri |
|- ( s e. ( ( R ` j ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( s e. ( R ` j ) \/ ( E. xL e. { x e. ( _Left ` A ) | 0s |
| 254 |
240 253
|
bitrdi |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( s e. ( R ` suc j ) <-> ( s e. ( R ` j ) \/ ( E. xL e. { x e. ( _Left ` A ) | 0s |
| 255 |
28
|
rspccv |
|- ( A. c e. ( R ` j ) 1s ( s e. ( R ` j ) -> 1s |
| 256 |
188 255
|
syl |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( s e. ( R ` j ) -> 1s |
| 257 |
122
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yL ) |
| 258 |
77
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A e. No ) |
| 259 |
90
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) yL e. No ) |
| 260 |
258 259
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yL ) e. No ) |
| 261 |
79
|
a1i |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s e. No ) |
| 262 |
185
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A -s xL ) e. No ) |
| 263 |
201
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
| 264 |
260 261 262 263
|
sltmul2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s yL ) ( ( A -s xL ) x.s ( A x.s yL ) ) |
| 265 |
257 264
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A -s xL ) x.s ( A x.s yL ) ) |
| 266 |
262
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A -s xL ) x.s 1s ) = ( A -s xL ) ) |
| 267 |
265 266
|
breqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A -s xL ) x.s ( A x.s yL ) ) |
| 268 |
158
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xL -s A ) e. No ) |
| 269 |
268 260
|
mulnegs1d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( -us ` ( xL -s A ) ) x.s ( A x.s yL ) ) = ( -us ` ( ( xL -s A ) x.s ( A x.s yL ) ) ) ) |
| 270 |
206
|
oveq1d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( -us ` ( xL -s A ) ) x.s ( A x.s yL ) ) = ( ( A -s xL ) x.s ( A x.s yL ) ) ) |
| 271 |
270
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( -us ` ( xL -s A ) ) x.s ( A x.s yL ) ) = ( ( A -s xL ) x.s ( A x.s yL ) ) ) |
| 272 |
269 271
|
eqtr3d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( -us ` ( ( xL -s A ) x.s ( A x.s yL ) ) ) = ( ( A -s xL ) x.s ( A x.s yL ) ) ) |
| 273 |
206
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( -us ` ( xL -s A ) ) = ( A -s xL ) ) |
| 274 |
267 272 273
|
3brtr4d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( -us ` ( ( xL -s A ) x.s ( A x.s yL ) ) ) |
| 275 |
268 260
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xL -s A ) x.s ( A x.s yL ) ) e. No ) |
| 276 |
268 275
|
sltnegd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xL -s A ) ( -us ` ( ( xL -s A ) x.s ( A x.s yL ) ) ) |
| 277 |
274 276
|
mpbird |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xL -s A ) |
| 278 |
156
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL e. No ) |
| 279 |
278 258 275
|
sltsubadd2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xL -s A ) xL |
| 280 |
277 279
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL |
| 281 |
278
|
mulslidd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s x.s xL ) = xL ) |
| 282 |
268 259
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xL -s A ) x.s yL ) e. No ) |
| 283 |
258 261 282
|
addsdid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yL ) ) ) = ( ( A x.s 1s ) +s ( A x.s ( ( xL -s A ) x.s yL ) ) ) ) |
| 284 |
258
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s 1s ) = A ) |
| 285 |
258 268 259
|
muls12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( ( xL -s A ) x.s yL ) ) = ( ( xL -s A ) x.s ( A x.s yL ) ) ) |
| 286 |
284 285
|
oveq12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s 1s ) +s ( A x.s ( ( xL -s A ) x.s yL ) ) ) = ( A +s ( ( xL -s A ) x.s ( A x.s yL ) ) ) ) |
| 287 |
283 286
|
eqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yL ) ) ) = ( A +s ( ( xL -s A ) x.s ( A x.s yL ) ) ) ) |
| 288 |
280 281 287
|
3brtr4d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s x.s xL ) |
| 289 |
261 282
|
addscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s +s ( ( xL -s A ) x.s yL ) ) e. No ) |
| 290 |
258 289
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xL -s A ) x.s yL ) ) ) e. No ) |
| 291 |
170
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
| 292 |
182
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) E. y e. No ( xL x.s y ) = 1s ) |
| 293 |
261 290 278 291 292
|
sltmuldivwd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( 1s x.s xL ) 1s |
| 294 |
288 293
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s |
| 295 |
171
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xL =/= 0s ) |
| 296 |
258 289 278 295 292
|
divsasswd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s ( 1s +s ( ( xL -s A ) x.s yL ) ) ) /su xL ) = ( A x.s ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) ) ) |
| 297 |
294 296
|
breqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s |
| 298 |
|
oveq2 |
|- ( s = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) -> ( A x.s s ) = ( A x.s ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) ) ) |
| 299 |
298
|
breq2d |
|- ( s = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) -> ( 1s 1s |
| 300 |
297 299
|
syl5ibrcom |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( s = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) -> 1s |
| 301 |
300
|
rexlimdvva |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( E. xL e. { x e. ( _Left ` A ) | 0s 1s |
| 302 |
85
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xR -s A ) e. No ) |
| 303 |
302
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s 1s ) = ( xR -s A ) ) |
| 304 |
192
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s |
| 305 |
79
|
a1i |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s e. No ) |
| 306 |
77
|
adantr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A e. No ) |
| 307 |
162
|
adantrl |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) yR e. No ) |
| 308 |
306 307
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s yR ) e. No ) |
| 309 |
126
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
| 310 |
305 308 302 309
|
sltmul2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s ( ( xR -s A ) x.s 1s ) |
| 311 |
304 310
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s 1s ) |
| 312 |
303 311
|
eqbrtrrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( xR -s A ) |
| 313 |
83
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR e. No ) |
| 314 |
302 308
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s ( A x.s yR ) ) e. No ) |
| 315 |
313 306 314
|
sltsubadd2d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) xR |
| 316 |
312 315
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR |
| 317 |
313
|
mulslidd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s x.s xR ) = xR ) |
| 318 |
302 307
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( xR -s A ) x.s yR ) e. No ) |
| 319 |
306 305 318
|
addsdid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yR ) ) ) = ( ( A x.s 1s ) +s ( A x.s ( ( xR -s A ) x.s yR ) ) ) ) |
| 320 |
306
|
mulsridd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s 1s ) = A ) |
| 321 |
306 302 307
|
muls12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( ( xR -s A ) x.s yR ) ) = ( ( xR -s A ) x.s ( A x.s yR ) ) ) |
| 322 |
320 321
|
oveq12d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s 1s ) +s ( A x.s ( ( xR -s A ) x.s yR ) ) ) = ( A +s ( ( xR -s A ) x.s ( A x.s yR ) ) ) ) |
| 323 |
319 322
|
eqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yR ) ) ) = ( A +s ( ( xR -s A ) x.s ( A x.s yR ) ) ) ) |
| 324 |
316 317 323
|
3brtr4d |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s x.s xR ) |
| 325 |
305 318
|
addscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( 1s +s ( ( xR -s A ) x.s yR ) ) e. No ) |
| 326 |
306 325
|
mulscld |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A x.s ( 1s +s ( ( xR -s A ) x.s yR ) ) ) e. No ) |
| 327 |
103
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 0s |
| 328 |
116
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) E. y e. No ( xR x.s y ) = 1s ) |
| 329 |
305 326 313 327 328
|
sltmuldivwd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( 1s x.s xR ) 1s |
| 330 |
324 329
|
mpbid |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s |
| 331 |
104
|
adantrr |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) xR =/= 0s ) |
| 332 |
306 325 313 331 328
|
divsasswd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( A x.s ( 1s +s ( ( xR -s A ) x.s yR ) ) ) /su xR ) = ( A x.s ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
| 333 |
330 332
|
breqtrd |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) 1s |
| 334 |
|
oveq2 |
|- ( s = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) -> ( A x.s s ) = ( A x.s ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) |
| 335 |
334
|
breq2d |
|- ( s = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) -> ( 1s 1s |
| 336 |
333 335
|
syl5ibrcom |
|- ( ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( s = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) -> 1s |
| 337 |
336
|
rexlimdvva |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( E. xR e. ( _Right ` A ) E. yR e. ( R ` j ) s = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) -> 1s |
| 338 |
301 337
|
jaod |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( E. xL e. { x e. ( _Left ` A ) | 0s 1s |
| 339 |
256 338
|
jaod |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( ( s e. ( R ` j ) \/ ( E. xL e. { x e. ( _Left ` A ) | 0s 1s |
| 340 |
254 339
|
sylbid |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( s e. ( R ` suc j ) -> 1s |
| 341 |
340
|
ralrimiv |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) A. s e. ( R ` suc j ) 1s |
| 342 |
237 341
|
jca |
|- ( ( ph /\ j e. _om /\ ( A. b e. ( L ` j ) ( A x.s b ) ( A. r e. ( L ` suc j ) ( A x.s r ) |
| 343 |
342
|
3exp |
|- ( ph -> ( j e. _om -> ( ( A. b e. ( L ` j ) ( A x.s b ) ( A. r e. ( L ` suc j ) ( A x.s r ) |
| 344 |
343
|
com12 |
|- ( j e. _om -> ( ph -> ( ( A. b e. ( L ` j ) ( A x.s b ) ( A. r e. ( L ` suc j ) ( A x.s r ) |
| 345 |
344
|
a2d |
|- ( j e. _om -> ( ( ph -> ( A. b e. ( L ` j ) ( A x.s b ) ( ph -> ( A. r e. ( L ` suc j ) ( A x.s r ) |
| 346 |
12 18 32 38 56 345
|
finds |
|- ( I e. _om -> ( ph -> ( A. b e. ( L ` I ) ( A x.s b ) |
| 347 |
346
|
impcom |
|- ( ( ph /\ I e. _om ) -> ( A. b e. ( L ` I ) ( A x.s b ) |