Step |
Hyp |
Ref |
Expression |
1 |
|
precsexlem.1 |
|- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) |
2 |
|
precsexlem.2 |
|- L = ( 1st o. F ) |
3 |
|
precsexlem.3 |
|- R = ( 2nd o. F ) |
4 |
|
nnawordex |
|- ( ( I e. _om /\ J e. _om ) -> ( I C_ J <-> E. k e. _om ( I +o k ) = J ) ) |
5 |
|
oveq2 |
|- ( k = (/) -> ( I +o k ) = ( I +o (/) ) ) |
6 |
5
|
fveq2d |
|- ( k = (/) -> ( R ` ( I +o k ) ) = ( R ` ( I +o (/) ) ) ) |
7 |
6
|
sseq2d |
|- ( k = (/) -> ( ( R ` I ) C_ ( R ` ( I +o k ) ) <-> ( R ` I ) C_ ( R ` ( I +o (/) ) ) ) ) |
8 |
|
oveq2 |
|- ( k = j -> ( I +o k ) = ( I +o j ) ) |
9 |
8
|
fveq2d |
|- ( k = j -> ( R ` ( I +o k ) ) = ( R ` ( I +o j ) ) ) |
10 |
9
|
sseq2d |
|- ( k = j -> ( ( R ` I ) C_ ( R ` ( I +o k ) ) <-> ( R ` I ) C_ ( R ` ( I +o j ) ) ) ) |
11 |
|
oveq2 |
|- ( k = suc j -> ( I +o k ) = ( I +o suc j ) ) |
12 |
11
|
fveq2d |
|- ( k = suc j -> ( R ` ( I +o k ) ) = ( R ` ( I +o suc j ) ) ) |
13 |
12
|
sseq2d |
|- ( k = suc j -> ( ( R ` I ) C_ ( R ` ( I +o k ) ) <-> ( R ` I ) C_ ( R ` ( I +o suc j ) ) ) ) |
14 |
|
nna0 |
|- ( I e. _om -> ( I +o (/) ) = I ) |
15 |
14
|
fveq2d |
|- ( I e. _om -> ( R ` ( I +o (/) ) ) = ( R ` I ) ) |
16 |
15
|
eqimsscd |
|- ( I e. _om -> ( R ` I ) C_ ( R ` ( I +o (/) ) ) ) |
17 |
|
nnacl |
|- ( ( I e. _om /\ j e. _om ) -> ( I +o j ) e. _om ) |
18 |
|
ssun1 |
|- ( R ` ( I +o j ) ) C_ ( ( R ` ( I +o j ) ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
19 |
1 2 3
|
precsexlem5 |
|- ( ( I +o j ) e. _om -> ( R ` suc ( I +o j ) ) = ( ( R ` ( I +o j ) ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s |
20 |
18 19
|
sseqtrrid |
|- ( ( I +o j ) e. _om -> ( R ` ( I +o j ) ) C_ ( R ` suc ( I +o j ) ) ) |
21 |
17 20
|
syl |
|- ( ( I e. _om /\ j e. _om ) -> ( R ` ( I +o j ) ) C_ ( R ` suc ( I +o j ) ) ) |
22 |
|
nnasuc |
|- ( ( I e. _om /\ j e. _om ) -> ( I +o suc j ) = suc ( I +o j ) ) |
23 |
22
|
fveq2d |
|- ( ( I e. _om /\ j e. _om ) -> ( R ` ( I +o suc j ) ) = ( R ` suc ( I +o j ) ) ) |
24 |
21 23
|
sseqtrrd |
|- ( ( I e. _om /\ j e. _om ) -> ( R ` ( I +o j ) ) C_ ( R ` ( I +o suc j ) ) ) |
25 |
|
sstr2 |
|- ( ( R ` I ) C_ ( R ` ( I +o j ) ) -> ( ( R ` ( I +o j ) ) C_ ( R ` ( I +o suc j ) ) -> ( R ` I ) C_ ( R ` ( I +o suc j ) ) ) ) |
26 |
24 25
|
syl5com |
|- ( ( I e. _om /\ j e. _om ) -> ( ( R ` I ) C_ ( R ` ( I +o j ) ) -> ( R ` I ) C_ ( R ` ( I +o suc j ) ) ) ) |
27 |
26
|
expcom |
|- ( j e. _om -> ( I e. _om -> ( ( R ` I ) C_ ( R ` ( I +o j ) ) -> ( R ` I ) C_ ( R ` ( I +o suc j ) ) ) ) ) |
28 |
7 10 13 16 27
|
finds2 |
|- ( k e. _om -> ( I e. _om -> ( R ` I ) C_ ( R ` ( I +o k ) ) ) ) |
29 |
28
|
impcom |
|- ( ( I e. _om /\ k e. _om ) -> ( R ` I ) C_ ( R ` ( I +o k ) ) ) |
30 |
|
fveq2 |
|- ( ( I +o k ) = J -> ( R ` ( I +o k ) ) = ( R ` J ) ) |
31 |
30
|
sseq2d |
|- ( ( I +o k ) = J -> ( ( R ` I ) C_ ( R ` ( I +o k ) ) <-> ( R ` I ) C_ ( R ` J ) ) ) |
32 |
29 31
|
syl5ibcom |
|- ( ( I e. _om /\ k e. _om ) -> ( ( I +o k ) = J -> ( R ` I ) C_ ( R ` J ) ) ) |
33 |
32
|
rexlimdva |
|- ( I e. _om -> ( E. k e. _om ( I +o k ) = J -> ( R ` I ) C_ ( R ` J ) ) ) |
34 |
33
|
adantr |
|- ( ( I e. _om /\ J e. _om ) -> ( E. k e. _om ( I +o k ) = J -> ( R ` I ) C_ ( R ` J ) ) ) |
35 |
4 34
|
sylbid |
|- ( ( I e. _om /\ J e. _om ) -> ( I C_ J -> ( R ` I ) C_ ( R ` J ) ) ) |
36 |
35
|
3impia |
|- ( ( I e. _om /\ J e. _om /\ I C_ J ) -> ( R ` I ) C_ ( R ` J ) ) |