| Step | Hyp | Ref | Expression | 
						
							| 1 |  | precsexlem.1 |  |-  F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) | 
						
							| 2 |  | precsexlem.2 |  |-  L = ( 1st o. F ) | 
						
							| 3 |  | precsexlem.3 |  |-  R = ( 2nd o. F ) | 
						
							| 4 |  | nnawordex |  |-  ( ( I e. _om /\ J e. _om ) -> ( I C_ J <-> E. k e. _om ( I +o k ) = J ) ) | 
						
							| 5 |  | oveq2 |  |-  ( k = (/) -> ( I +o k ) = ( I +o (/) ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( k = (/) -> ( R ` ( I +o k ) ) = ( R ` ( I +o (/) ) ) ) | 
						
							| 7 | 6 | sseq2d |  |-  ( k = (/) -> ( ( R ` I ) C_ ( R ` ( I +o k ) ) <-> ( R ` I ) C_ ( R ` ( I +o (/) ) ) ) ) | 
						
							| 8 |  | oveq2 |  |-  ( k = j -> ( I +o k ) = ( I +o j ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( k = j -> ( R ` ( I +o k ) ) = ( R ` ( I +o j ) ) ) | 
						
							| 10 | 9 | sseq2d |  |-  ( k = j -> ( ( R ` I ) C_ ( R ` ( I +o k ) ) <-> ( R ` I ) C_ ( R ` ( I +o j ) ) ) ) | 
						
							| 11 |  | oveq2 |  |-  ( k = suc j -> ( I +o k ) = ( I +o suc j ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( k = suc j -> ( R ` ( I +o k ) ) = ( R ` ( I +o suc j ) ) ) | 
						
							| 13 | 12 | sseq2d |  |-  ( k = suc j -> ( ( R ` I ) C_ ( R ` ( I +o k ) ) <-> ( R ` I ) C_ ( R ` ( I +o suc j ) ) ) ) | 
						
							| 14 |  | nna0 |  |-  ( I e. _om -> ( I +o (/) ) = I ) | 
						
							| 15 | 14 | fveq2d |  |-  ( I e. _om -> ( R ` ( I +o (/) ) ) = ( R ` I ) ) | 
						
							| 16 | 15 | eqimsscd |  |-  ( I e. _om -> ( R ` I ) C_ ( R ` ( I +o (/) ) ) ) | 
						
							| 17 |  | nnacl |  |-  ( ( I e. _om /\ j e. _om ) -> ( I +o j ) e. _om ) | 
						
							| 18 |  | ssun1 |  |-  ( R ` ( I +o j ) ) C_ ( ( R ` ( I +o j ) ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s  | 
						
							| 19 | 1 2 3 | precsexlem5 |  |-  ( ( I +o j ) e. _om -> ( R ` suc ( I +o j ) ) = ( ( R ` ( I +o j ) ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s  | 
						
							| 20 | 18 19 | sseqtrrid |  |-  ( ( I +o j ) e. _om -> ( R ` ( I +o j ) ) C_ ( R ` suc ( I +o j ) ) ) | 
						
							| 21 | 17 20 | syl |  |-  ( ( I e. _om /\ j e. _om ) -> ( R ` ( I +o j ) ) C_ ( R ` suc ( I +o j ) ) ) | 
						
							| 22 |  | nnasuc |  |-  ( ( I e. _om /\ j e. _om ) -> ( I +o suc j ) = suc ( I +o j ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ( I e. _om /\ j e. _om ) -> ( R ` ( I +o suc j ) ) = ( R ` suc ( I +o j ) ) ) | 
						
							| 24 | 21 23 | sseqtrrd |  |-  ( ( I e. _om /\ j e. _om ) -> ( R ` ( I +o j ) ) C_ ( R ` ( I +o suc j ) ) ) | 
						
							| 25 |  | sstr2 |  |-  ( ( R ` I ) C_ ( R ` ( I +o j ) ) -> ( ( R ` ( I +o j ) ) C_ ( R ` ( I +o suc j ) ) -> ( R ` I ) C_ ( R ` ( I +o suc j ) ) ) ) | 
						
							| 26 | 24 25 | syl5com |  |-  ( ( I e. _om /\ j e. _om ) -> ( ( R ` I ) C_ ( R ` ( I +o j ) ) -> ( R ` I ) C_ ( R ` ( I +o suc j ) ) ) ) | 
						
							| 27 | 26 | expcom |  |-  ( j e. _om -> ( I e. _om -> ( ( R ` I ) C_ ( R ` ( I +o j ) ) -> ( R ` I ) C_ ( R ` ( I +o suc j ) ) ) ) ) | 
						
							| 28 | 7 10 13 16 27 | finds2 |  |-  ( k e. _om -> ( I e. _om -> ( R ` I ) C_ ( R ` ( I +o k ) ) ) ) | 
						
							| 29 | 28 | impcom |  |-  ( ( I e. _om /\ k e. _om ) -> ( R ` I ) C_ ( R ` ( I +o k ) ) ) | 
						
							| 30 |  | fveq2 |  |-  ( ( I +o k ) = J -> ( R ` ( I +o k ) ) = ( R ` J ) ) | 
						
							| 31 | 30 | sseq2d |  |-  ( ( I +o k ) = J -> ( ( R ` I ) C_ ( R ` ( I +o k ) ) <-> ( R ` I ) C_ ( R ` J ) ) ) | 
						
							| 32 | 29 31 | syl5ibcom |  |-  ( ( I e. _om /\ k e. _om ) -> ( ( I +o k ) = J -> ( R ` I ) C_ ( R ` J ) ) ) | 
						
							| 33 | 32 | rexlimdva |  |-  ( I e. _om -> ( E. k e. _om ( I +o k ) = J -> ( R ` I ) C_ ( R ` J ) ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( I e. _om /\ J e. _om ) -> ( E. k e. _om ( I +o k ) = J -> ( R ` I ) C_ ( R ` J ) ) ) | 
						
							| 35 | 4 34 | sylbid |  |-  ( ( I e. _om /\ J e. _om ) -> ( I C_ J -> ( R ` I ) C_ ( R ` J ) ) ) | 
						
							| 36 | 35 | 3impia |  |-  ( ( I e. _om /\ J e. _om /\ I C_ J ) -> ( R ` I ) C_ ( R ` J ) ) |