Metamath Proof Explorer


Theorem preiman0

Description: The preimage of a nonempty set is nonempty. (Contributed by Thierry Arnoux, 9-Jun-2024)

Ref Expression
Assertion preiman0 FunFAranFAF-1A

Proof

Step Hyp Ref Expression
1 df-rn ranF=domF-1
2 1 ineq1i ranFAranF=domF-1AranF
3 df-ss AranFAranF=A
4 3 biimpi AranFAranF=A
5 4 ineq2d AranFranFAranF=ranFA
6 sseqin2 AranFranFA=A
7 6 biimpi AranFranFA=A
8 5 7 eqtrd AranFranFAranF=A
9 8 3ad2ant2 FunFAranFF-1A=ranFAranF=A
10 fimacnvinrn FunFF-1A=F-1AranF
11 10 eqeq1d FunFF-1A=F-1AranF=
12 11 biimpa FunFF-1A=F-1AranF=
13 12 3adant2 FunFAranFF-1A=F-1AranF=
14 imadisj F-1AranF=domF-1AranF=
15 13 14 sylib FunFAranFF-1A=domF-1AranF=
16 2 9 15 3eqtr3a FunFAranFF-1A=A=
17 16 3expia FunFAranFF-1A=A=
18 17 necon3d FunFAranFAF-1A
19 18 3impia FunFAranFAF-1A