Metamath Proof Explorer


Theorem prelspr

Description: An unordered pair of elements of a fixed set V belongs to the set of all unordered pairs over the set V . (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion prelspr VWXVYVXYPairsV

Proof

Step Hyp Ref Expression
1 prelpwi XVYVXY𝒫V
2 eqidd XVYVXY=XY
3 preq1 a=Xab=Xb
4 3 eqeq2d a=XXY=abXY=Xb
5 preq2 b=YXb=XY
6 5 eqeq2d b=YXY=XbXY=XY
7 4 6 rspc2ev XVYVXY=XYaVbVXY=ab
8 2 7 mpd3an3 XVYVaVbVXY=ab
9 1 8 jca XVYVXY𝒫VaVbVXY=ab
10 9 adantl VWXVYVXY𝒫VaVbVXY=ab
11 eqeq1 p=XYp=abXY=ab
12 11 2rexbidv p=XYaVbVp=abaVbVXY=ab
13 12 elrab XYp𝒫V|aVbVp=abXY𝒫VaVbVXY=ab
14 10 13 sylibr VWXVYVXYp𝒫V|aVbVp=ab
15 sprvalpw VWPairsV=p𝒫V|aVbVp=ab
16 15 adantr VWXVYVPairsV=p𝒫V|aVbVp=ab
17 14 16 eleqtrrd VWXVYVXYPairsV