Description: An unordered pair of elements of a fixed set V belongs to the set of all unordered pairs over the set V . (Contributed by AV, 21-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | prelspr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prelpwi | |
|
2 | eqidd | |
|
3 | preq1 | |
|
4 | 3 | eqeq2d | |
5 | preq2 | |
|
6 | 5 | eqeq2d | |
7 | 4 6 | rspc2ev | |
8 | 2 7 | mpd3an3 | |
9 | 1 8 | jca | |
10 | 9 | adantl | |
11 | eqeq1 | |
|
12 | 11 | 2rexbidv | |
13 | 12 | elrab | |
14 | 10 13 | sylibr | |
15 | sprvalpw | |
|
16 | 15 | adantr | |
17 | 14 16 | eleqtrrd | |