Metamath Proof Explorer


Theorem prinfzo0

Description: The intersection of a half-open integer range and the pair of its outer left borders is empty. (Contributed by AV, 9-Jan-2021)

Ref Expression
Assertion prinfzo0 MMNM+1..^N=

Proof

Step Hyp Ref Expression
1 elfz3 MMMM
2 fznuz MMM¬MM+1
3 1 2 syl M¬MM+1
4 3 3mix1d M¬MM+1¬N¬M<N
5 3ianor ¬MM+1NM<N¬MM+1¬N¬M<N
6 elfzo2 MM+1..^NMM+1NM<N
7 5 6 xchnxbir ¬MM+1..^N¬MM+1¬N¬M<N
8 4 7 sylibr M¬MM+1..^N
9 incom MM+1..^N=M+1..^NM
10 9 eqeq1i MM+1..^N=M+1..^NM=
11 disjsn M+1..^NM=¬MM+1..^N
12 10 11 bitri MM+1..^N=¬MM+1..^N
13 8 12 sylibr MMM+1..^N=
14 fzonel ¬NM+1..^N
15 14 a1i M¬NM+1..^N
16 incom NM+1..^N=M+1..^NN
17 16 eqeq1i NM+1..^N=M+1..^NN=
18 disjsn M+1..^NN=¬NM+1..^N
19 17 18 bitri NM+1..^N=¬NM+1..^N
20 15 19 sylibr MNM+1..^N=
21 df-pr MN=MN
22 21 ineq1i MNM+1..^N=MNM+1..^N
23 22 eqeq1i MNM+1..^N=MNM+1..^N=
24 undisj1 MM+1..^N=NM+1..^N=MNM+1..^N=
25 23 24 bitr4i MNM+1..^N=MM+1..^N=NM+1..^N=
26 13 20 25 sylanbrc MMNM+1..^N=