Metamath Proof Explorer


Theorem prjsper

Description: The relation used to define PrjSp is an equivalence relation. (Contributed by Steven Nguyen, 1-May-2023)

Ref Expression
Hypotheses prjsprel.1 ˙ = x y | x B y B l K x = l · ˙ y
prjspertr.b B = Base V 0 V
prjspertr.s S = Scalar V
prjspertr.x · ˙ = V
prjspertr.k K = Base S
Assertion prjsper V LVec ˙ Er B

Proof

Step Hyp Ref Expression
1 prjsprel.1 ˙ = x y | x B y B l K x = l · ˙ y
2 prjspertr.b B = Base V 0 V
3 prjspertr.s S = Scalar V
4 prjspertr.x · ˙ = V
5 prjspertr.k K = Base S
6 1 relopabi Rel ˙
7 6 a1i V LVec Rel ˙
8 1 2 3 4 5 prjspersym V LVec a ˙ b b ˙ a
9 lveclmod V LVec V LMod
10 1 2 3 4 5 prjspertr V LMod a ˙ b b ˙ c a ˙ c
11 9 10 sylan V LVec a ˙ b b ˙ c a ˙ c
12 1 2 3 4 5 prjsperref V LMod a B a ˙ a
13 9 12 syl V LVec a B a ˙ a
14 7 8 11 13 iserd V LVec ˙ Er B