Metamath Proof Explorer


Theorem prjspnerlem

Description: A lemma showing that the equivalence relation used in prjspnval2 and the equivalence relation used in prjspval are equal, but only with the antecedent K e. DivRing . (Contributed by SN, 15-Jul-2023)

Ref Expression
Hypotheses prjspnerlem.e ˙=xy|xByBlSx=l·˙y
prjspnerlem.w W=KfreeLMod0N
prjspnerlem.b B=BaseW0W
prjspnerlem.s S=BaseK
prjspnerlem.x ·˙=W
Assertion prjspnerlem KDivRing˙=xy|xByBlBaseScalarWx=l·˙y

Proof

Step Hyp Ref Expression
1 prjspnerlem.e ˙=xy|xByBlSx=l·˙y
2 prjspnerlem.w W=KfreeLMod0N
3 prjspnerlem.b B=BaseW0W
4 prjspnerlem.s S=BaseK
5 prjspnerlem.x ·˙=W
6 ovex 0NV
7 2 frlmsca KDivRing0NVK=ScalarW
8 6 7 mpan2 KDivRingK=ScalarW
9 8 fveq2d KDivRingBaseK=BaseScalarW
10 4 9 eqtrid KDivRingS=BaseScalarW
11 10 rexeqdv KDivRinglSx=l·˙ylBaseScalarWx=l·˙y
12 11 anbi2d KDivRingxByBlSx=l·˙yxByBlBaseScalarWx=l·˙y
13 12 opabbidv KDivRingxy|xByBlSx=l·˙y=xy|xByBlBaseScalarWx=l·˙y
14 1 13 eqtrid KDivRing˙=xy|xByBlBaseScalarWx=l·˙y