Metamath Proof Explorer


Theorem prjsprellsp

Description: Two vectors are equivalent iff their spans are equal. (Contributed by Steven Nguyen, 31-May-2023)

Ref Expression
Hypotheses prjsprel.1 ˙=xy|xByBlKx=l·˙y
prjspertr.b B=BaseV0V
prjspertr.s S=ScalarV
prjspertr.x ·˙=V
prjspertr.k K=BaseS
prjsprellsp.n N=LSpanV
Assertion prjsprellsp VLVecXBYBX˙YNX=NY

Proof

Step Hyp Ref Expression
1 prjsprel.1 ˙=xy|xByBlKx=l·˙y
2 prjspertr.b B=BaseV0V
3 prjspertr.s S=ScalarV
4 prjspertr.x ·˙=V
5 prjspertr.k K=BaseS
6 prjsprellsp.n N=LSpanV
7 ibar XBYBmK0SX=m·˙YXBYBmK0SX=m·˙Y
8 7 bicomd XBYBXBYBmK0SX=m·˙YmK0SX=m·˙Y
9 8 adantl VLVecXBYBXBYBmK0SX=m·˙YmK0SX=m·˙Y
10 eqid 0S=0S
11 1 2 3 4 5 10 prjspreln0 VLVecX˙YXBYBmK0SX=m·˙Y
12 11 adantr VLVecXBYBX˙YXBYBmK0SX=m·˙Y
13 eqid BaseV=BaseV
14 simpl VLVecXBYBVLVec
15 eldifi XBaseV0VXBaseV
16 15 2 eleq2s XBXBaseV
17 16 ad2antrl VLVecXBYBXBaseV
18 eldifi YBaseV0VYBaseV
19 18 2 eleq2s YBYBaseV
20 19 ad2antll VLVecXBYBYBaseV
21 13 3 5 10 4 6 14 17 20 lspsneq VLVecXBYBNX=NYmK0SX=m·˙Y
22 9 12 21 3bitr4d VLVecXBYBX˙YNX=NY