Metamath Proof Explorer


Theorem prjspval2

Description: Alternate definition of projective space. (Contributed by Steven Nguyen, 7-Jun-2023)

Ref Expression
Hypotheses prjspval2.0 0˙=0V
prjspval2.b B=BaseV0˙
prjspval2.n N=LSpanV
Assertion prjspval2 VLVecℙ𝕣𝕠𝕛V=zBNz0˙

Proof

Step Hyp Ref Expression
1 prjspval2.0 0˙=0V
2 prjspval2.b B=BaseV0˙
3 prjspval2.n N=LSpanV
4 1 sneqi 0˙=0V
5 4 difeq2i BaseV0˙=BaseV0V
6 2 5 eqtri B=BaseV0V
7 eqid V=V
8 eqid ScalarV=ScalarV
9 eqid BaseScalarV=BaseScalarV
10 6 7 8 9 prjspval VLVecℙ𝕣𝕠𝕛V=B/xy|xByBlBaseScalarVx=lVy
11 dfqs3 B/xy|xByBlBaseScalarVx=lVy=zBzxy|xByBlBaseScalarVx=lVy
12 11 a1i VLVecB/xy|xByBlBaseScalarVx=lVy=zBzxy|xByBlBaseScalarVx=lVy
13 eqid xy|xByBlBaseScalarVx=lVy=xy|xByBlBaseScalarVx=lVy
14 13 6 8 7 9 3 prjspeclsp VLVeczBzxy|xByBlBaseScalarVx=lVy=Nz0V
15 4 difeq2i Nz0˙=Nz0V
16 14 15 eqtr4di VLVeczBzxy|xByBlBaseScalarVx=lVy=Nz0˙
17 16 sneqd VLVeczBzxy|xByBlBaseScalarVx=lVy=Nz0˙
18 17 iuneq2dv VLVeczBzxy|xByBlBaseScalarVx=lVy=zBNz0˙
19 10 12 18 3eqtrd VLVecℙ𝕣𝕠𝕛V=zBNz0˙