Metamath Proof Explorer


Theorem prmdvdsfz

Description: Each integer greater than 1 and less then or equal to a fixed number is divisible by a prime less then or equal to this fixed number. (Contributed by AV, 15-Aug-2020)

Ref Expression
Assertion prmdvdsfz NI2NppNpI

Proof

Step Hyp Ref Expression
1 elfzuz I2NI2
2 1 adantl NI2NI2
3 exprmfct I2ppI
4 2 3 syl NI2NppI
5 prmz pp
6 eluz2nn I2I
7 1 6 syl I2NI
8 7 adantl NI2NI
9 dvdsle pIpIpI
10 5 8 9 syl2anr NI2NppIpI
11 elfzle2 I2NIN
12 11 ad2antlr NI2NpIN
13 5 zred pp
14 13 adantl NI2Npp
15 elfzelz I2NI
16 15 zred I2NI
17 16 ad2antlr NI2NpI
18 nnre NN
19 18 ad2antrr NI2NpN
20 letr pINpIINpN
21 14 17 19 20 syl3anc NI2NppIINpN
22 12 21 mpan2d NI2NppIpN
23 10 22 syld NI2NppIpN
24 23 ancrd NI2NppIpNpI
25 24 reximdva NI2NppIppNpI
26 4 25 mpd NI2NppNpI