Metamath Proof Explorer


Theorem prmlem1

Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses prmlem1.n N
prmlem1.gt 1<N
prmlem1.2 ¬2N
prmlem1.3 ¬3N
prmlem1.lt N<25
Assertion prmlem1 N

Proof

Step Hyp Ref Expression
1 prmlem1.n N
2 prmlem1.gt 1<N
3 prmlem1.2 ¬2N
4 prmlem1.3 ¬3N
5 prmlem1.lt N<25
6 eluzelre x5x
7 6 resqcld x5x2
8 eluzle x55x
9 5re 5
10 5nn0 50
11 10 nn0ge0i 05
12 le2sq2 505x5x52x2
13 9 11 12 mpanl12 x5x52x2
14 6 8 13 syl2anc x552x2
15 1 nnrei N
16 9 resqcli 52
17 5cn 5
18 17 sqvali 52=55
19 5t5e25 55=25
20 18 19 eqtri 52=25
21 5 20 breqtrri N<52
22 ltletr N52x2N<5252x2N<x2
23 21 22 mpani N52x252x2N<x2
24 15 16 23 mp3an12 x252x2N<x2
25 7 14 24 sylc x5N<x2
26 ltnle Nx2N<x2¬x2N
27 15 7 26 sylancr x5N<x2¬x2N
28 25 27 mpbid x5¬x2N
29 28 pm2.21d x5x2N¬xN
30 29 adantld x5x2x2N¬xN
31 30 adantl ¬25x5x2x2N¬xN
32 1 2 3 4 31 prmlem1a N