Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prmlem1.n | |
|
prmlem1.gt | |
||
prmlem1.2 | |
||
prmlem1.3 | |
||
prmlem1.lt | |
||
Assertion | prmlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmlem1.n | |
|
2 | prmlem1.gt | |
|
3 | prmlem1.2 | |
|
4 | prmlem1.3 | |
|
5 | prmlem1.lt | |
|
6 | eluzelre | |
|
7 | 6 | resqcld | |
8 | eluzle | |
|
9 | 5re | |
|
10 | 5nn0 | |
|
11 | 10 | nn0ge0i | |
12 | le2sq2 | |
|
13 | 9 11 12 | mpanl12 | |
14 | 6 8 13 | syl2anc | |
15 | 1 | nnrei | |
16 | 9 | resqcli | |
17 | 5cn | |
|
18 | 17 | sqvali | |
19 | 5t5e25 | |
|
20 | 18 19 | eqtri | |
21 | 5 20 | breqtrri | |
22 | ltletr | |
|
23 | 21 22 | mpani | |
24 | 15 16 23 | mp3an12 | |
25 | 7 14 24 | sylc | |
26 | ltnle | |
|
27 | 15 7 26 | sylancr | |
28 | 25 27 | mpbid | |
29 | 28 | pm2.21d | |
30 | 29 | adantld | |
31 | 30 | adantl | |
32 | 1 2 3 4 31 | prmlem1a | |