Metamath Proof Explorer


Theorem prodf1f

Description: A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017)

Ref Expression
Hypothesis prodf1.1 Z=M
Assertion prodf1f MseqM×Z×1=Z×1

Proof

Step Hyp Ref Expression
1 prodf1.1 Z=M
2 1 prodf1 kZseqM×Z×1k=1
3 1ex 1V
4 3 fvconst2 kZZ×1k=1
5 2 4 eqtr4d kZseqM×Z×1k=Z×1k
6 5 rgen kZseqM×Z×1k=Z×1k
7 seqfn MseqM×Z×1FnM
8 1 fneq2i seqM×Z×1FnZseqM×Z×1FnM
9 7 8 sylibr MseqM×Z×1FnZ
10 3 fconst Z×1:Z1
11 ffn Z×1:Z1Z×1FnZ
12 10 11 ax-mp Z×1FnZ
13 eqfnfv seqM×Z×1FnZZ×1FnZseqM×Z×1=Z×1kZseqM×Z×1k=Z×1k
14 9 12 13 sylancl MseqM×Z×1=Z×1kZseqM×Z×1k=Z×1k
15 6 14 mpbiri MseqM×Z×1=Z×1