Metamath Proof Explorer


Theorem prprvalpw

Description: The set of all proper unordered pairs over a given set V , expressed by a restricted class abstraction. (Contributed by AV, 29-Apr-2023)

Ref Expression
Assertion prprvalpw VWPrPairsV=p𝒫V|aVbVabp=ab

Proof

Step Hyp Ref Expression
1 prprval VWPrPairsV=p|aVbVabp=ab
2 prssi aVbVabV
3 eleq1 p=abp𝒫Vab𝒫V
4 3 adantl abp=abp𝒫Vab𝒫V
5 prex abV
6 5 elpw ab𝒫VabV
7 4 6 bitrdi abp=abp𝒫VabV
8 2 7 syl5ibrcom aVbVabp=abp𝒫V
9 8 rexlimivv aVbVabp=abp𝒫V
10 9 pm4.71ri aVbVabp=abp𝒫VaVbVabp=ab
11 10 a1i VWaVbVabp=abp𝒫VaVbVabp=ab
12 11 abbidv VWp|aVbVabp=ab=p|p𝒫VaVbVabp=ab
13 df-rab p𝒫V|aVbVabp=ab=p|p𝒫VaVbVabp=ab
14 12 13 eqtr4di VWp|aVbVabp=ab=p𝒫V|aVbVabp=ab
15 1 14 eqtrd VWPrPairsV=p𝒫V|aVbVabp=ab