Description: The set of all proper unordered pairs over a given set V , expressed by a restricted class abstraction. (Contributed by AV, 29-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | prprvalpw | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprval | |
|
2 | prssi | |
|
3 | eleq1 | |
|
4 | 3 | adantl | |
5 | prex | |
|
6 | 5 | elpw | |
7 | 4 6 | bitrdi | |
8 | 2 7 | syl5ibrcom | |
9 | 8 | rexlimivv | |
10 | 9 | pm4.71ri | |
11 | 10 | a1i | |
12 | 11 | abbidv | |
13 | df-rab | |
|
14 | 12 13 | eqtr4di | |
15 | 1 14 | eqtrd | |