Metamath Proof Explorer


Theorem prstchomval

Description: Hom-sets of the constructed category which depend on an arbitrary definition. (Contributed by Zhi Wang, 20-Sep-2024) (New usage is discouraged.)

Ref Expression
Hypotheses prstcnid.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
prstcnid.k φ K Proset
prstchomval.l φ ˙ = C
Assertion prstchomval φ ˙ × 1 𝑜 = Hom C

Proof

Step Hyp Ref Expression
1 prstcnid.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 prstcnid.k φ K Proset
3 prstchomval.l φ ˙ = C
4 homid Hom = Slot Hom ndx
5 slotsbhcdif Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx
6 5 simp3i Hom ndx comp ndx
7 1 2 4 6 prstcnidlem φ Hom C = Hom K sSet Hom ndx K × 1 𝑜
8 fvex K V
9 snex 1 𝑜 V
10 8 9 xpex K × 1 𝑜 V
11 4 setsid K Proset K × 1 𝑜 V K × 1 𝑜 = Hom K sSet Hom ndx K × 1 𝑜
12 2 10 11 sylancl φ K × 1 𝑜 = Hom K sSet Hom ndx K × 1 𝑜
13 eqidd φ K = K
14 1 2 13 prstcleval φ K = C
15 14 3 eqtr4d φ K = ˙
16 15 xpeq1d φ K × 1 𝑜 = ˙ × 1 𝑜
17 7 12 16 3eqtr2rd φ ˙ × 1 𝑜 = Hom C