Metamath Proof Explorer


Theorem prtlem10

Description: Lemma for prter3 . (Contributed by Rodolfo Medina, 14-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion prtlem10 ˙ErAzAz˙wvAzv˙wv˙

Proof

Step Hyp Ref Expression
1 simpr ˙ErAzAzA
2 simpl ˙ErAzA˙ErA
3 2 1 erref ˙ErAzAz˙z
4 breq1 v=zv˙zz˙z
5 breq1 v=zv˙wz˙w
6 4 5 anbi12d v=zv˙zv˙wz˙zz˙w
7 6 rspcev zAz˙zz˙wvAv˙zv˙w
8 7 expr zAz˙zz˙wvAv˙zv˙w
9 1 3 8 syl2anc ˙ErAzAz˙wvAv˙zv˙w
10 simplll ˙ErAzAvAv˙zv˙w˙ErA
11 simprl ˙ErAzAvAv˙zv˙wv˙z
12 simprr ˙ErAzAvAv˙zv˙wv˙w
13 10 11 12 ertr3d ˙ErAzAvAv˙zv˙wz˙w
14 13 rexlimdva2 ˙ErAzAvAv˙zv˙wz˙w
15 9 14 impbid ˙ErAzAz˙wvAv˙zv˙w
16 vex zV
17 vex vV
18 16 17 elec zv˙v˙z
19 vex wV
20 19 17 elec wv˙v˙w
21 18 20 anbi12i zv˙wv˙v˙zv˙w
22 21 rexbii vAzv˙wv˙vAv˙zv˙w
23 15 22 bitr4di ˙ErAzAz˙wvAzv˙wv˙
24 23 ex ˙ErAzAz˙wvAzv˙wv˙