Metamath Proof Explorer


Theorem prub

Description: A positive fraction not in a positive real is an upper bound. Remark (1) of Gleason p. 122. (Contributed by NM, 25-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion prub A𝑷BAC𝑸¬CAB<𝑸C

Proof

Step Hyp Ref Expression
1 eleq1 B=CBACA
2 1 biimpcd BAB=CCA
3 2 adantl A𝑷BAB=CCA
4 prcdnq A𝑷BAC<𝑸BCA
5 3 4 jaod A𝑷BAB=CC<𝑸BCA
6 5 con3d A𝑷BA¬CA¬B=CC<𝑸B
7 6 adantr A𝑷BAC𝑸¬CA¬B=CC<𝑸B
8 elprnq A𝑷BAB𝑸
9 ltsonq <𝑸Or𝑸
10 sotric <𝑸Or𝑸B𝑸C𝑸B<𝑸C¬B=CC<𝑸B
11 9 10 mpan B𝑸C𝑸B<𝑸C¬B=CC<𝑸B
12 8 11 sylan A𝑷BAC𝑸B<𝑸C¬B=CC<𝑸B
13 7 12 sylibrd A𝑷BAC𝑸¬CAB<𝑸C