Metamath Proof Explorer


Theorem psgndmfi

Description: For a finite base set, the permutation sign is defined for all permutations. (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypotheses psgndmfi.s S=pmSgnD
psgndmfi.g G=BaseSymGrpD
Assertion psgndmfi DFinSFnG

Proof

Step Hyp Ref Expression
1 psgndmfi.s S=pmSgnD
2 psgndmfi.g G=BaseSymGrpD
3 eqid SymGrpD=SymGrpD
4 eqid pG|dompIFin=pG|dompIFin
5 3 2 4 1 psgnfn SFnpG|dompIFin
6 3 2 sygbasnfpfi DFinpGdompIFin
7 6 ralrimiva DFinpGdompIFin
8 rabid2 G=pG|dompIFinpGdompIFin
9 7 8 sylibr DFinG=pG|dompIFin
10 9 eqcomd DFinpG|dompIFin=G
11 10 fneq2d DFinSFnpG|dompIFinSFnG
12 5 11 mpbii DFinSFnG