Metamath Proof Explorer


Theorem psgnodpmr

Description: If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses evpmss.s S=SymGrpD
evpmss.p P=BaseS
psgnevpmb.n N=pmSgnD
Assertion psgnodpmr DFinFPNF=1FPpmEvenD

Proof

Step Hyp Ref Expression
1 evpmss.s S=SymGrpD
2 evpmss.p P=BaseS
3 psgnevpmb.n N=pmSgnD
4 simp2 DFinFPNF=1FP
5 1 2 3 psgnevpm DFinFpmEvenDNF=1
6 5 ex DFinFpmEvenDNF=1
7 6 adantr DFinFPFpmEvenDNF=1
8 neg1rr 1
9 neg1lt0 1<0
10 0lt1 0<1
11 0re 0
12 1re 1
13 8 11 12 lttri 1<00<11<1
14 9 10 13 mp2an 1<1
15 8 14 gtneii 11
16 neeq1 NF=1NF111
17 15 16 mpbiri NF=1NF1
18 7 17 syl6 DFinFPFpmEvenDNF1
19 18 necon2bd DFinFPNF=1¬FpmEvenD
20 19 3impia DFinFPNF=1¬FpmEvenD
21 4 20 eldifd DFinFPNF=1FPpmEvenD