Metamath Proof Explorer


Theorem zrhpsgnevpm

Description: The sign of an even permutation embedded into a ring is the unity element of the ring. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses zrhpsgnevpm.y Y=ℤRHomR
zrhpsgnevpm.s S=pmSgnN
zrhpsgnevpm.o 1˙=1R
Assertion zrhpsgnevpm RRingNFinFpmEvenNYSF=1˙

Proof

Step Hyp Ref Expression
1 zrhpsgnevpm.y Y=ℤRHomR
2 zrhpsgnevpm.s S=pmSgnN
3 zrhpsgnevpm.o 1˙=1R
4 eqid SymGrpN=SymGrpN
5 eqid mulGrpfld𝑠11=mulGrpfld𝑠11
6 4 2 5 psgnghm2 NFinSSymGrpNGrpHommulGrpfld𝑠11
7 eqid BaseSymGrpN=BaseSymGrpN
8 eqid BasemulGrpfld𝑠11=BasemulGrpfld𝑠11
9 7 8 ghmf SSymGrpNGrpHommulGrpfld𝑠11S:BaseSymGrpNBasemulGrpfld𝑠11
10 6 9 syl NFinS:BaseSymGrpNBasemulGrpfld𝑠11
11 10 3ad2ant2 RRingNFinFpmEvenNS:BaseSymGrpNBasemulGrpfld𝑠11
12 4 7 evpmss pmEvenNBaseSymGrpN
13 12 sseli FpmEvenNFBaseSymGrpN
14 13 3ad2ant3 RRingNFinFpmEvenNFBaseSymGrpN
15 fvco3 S:BaseSymGrpNBasemulGrpfld𝑠11FBaseSymGrpNYSF=YSF
16 11 14 15 syl2anc RRingNFinFpmEvenNYSF=YSF
17 4 7 2 psgnevpm NFinFpmEvenNSF=1
18 17 3adant1 RRingNFinFpmEvenNSF=1
19 18 fveq2d RRingNFinFpmEvenNYSF=Y1
20 1 3 zrh1 RRingY1=1˙
21 20 3ad2ant1 RRingNFinFpmEvenNY1=1˙
22 16 19 21 3eqtrd RRingNFinFpmEvenNYSF=1˙