Metamath Proof Explorer


Theorem evpmss

Description: Even permutations are permutations. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses evpmss.s S=SymGrpD
evpmss.p P=BaseS
Assertion evpmss pmEvenDP

Proof

Step Hyp Ref Expression
1 evpmss.s S=SymGrpD
2 evpmss.p P=BaseS
3 fveq2 d=DpmSgnd=pmSgnD
4 3 cnveqd d=DpmSgnd-1=pmSgnD-1
5 4 imaeq1d d=DpmSgnd-11=pmSgnD-11
6 df-evpm pmEven=dVpmSgnd-11
7 fvex pmSgnDV
8 7 cnvex pmSgnD-1V
9 8 imaex pmSgnD-11V
10 5 6 9 fvmpt DVpmEvenD=pmSgnD-11
11 cnvimass pmSgnD-11dompmSgnD
12 eqid pmSgnD=pmSgnD
13 eqid S𝑠dompmSgnD=S𝑠dompmSgnD
14 eqid mulGrpfld𝑠11=mulGrpfld𝑠11
15 1 12 13 14 psgnghm DVpmSgnDS𝑠dompmSgnDGrpHommulGrpfld𝑠11
16 eqid BaseS𝑠dompmSgnD=BaseS𝑠dompmSgnD
17 eqid BasemulGrpfld𝑠11=BasemulGrpfld𝑠11
18 16 17 ghmf pmSgnDS𝑠dompmSgnDGrpHommulGrpfld𝑠11pmSgnD:BaseS𝑠dompmSgnDBasemulGrpfld𝑠11
19 fdm pmSgnD:BaseS𝑠dompmSgnDBasemulGrpfld𝑠11dompmSgnD=BaseS𝑠dompmSgnD
20 15 18 19 3syl DVdompmSgnD=BaseS𝑠dompmSgnD
21 13 2 ressbasss BaseS𝑠dompmSgnDP
22 20 21 eqsstrdi DVdompmSgnDP
23 11 22 sstrid DVpmSgnD-11P
24 10 23 eqsstrd DVpmEvenDP
25 fvprc ¬DVpmEvenD=
26 0ss P
27 25 26 eqsstrdi ¬DVpmEvenDP
28 24 27 pm2.61i pmEvenDP