| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evpmss.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 2 |
|
evpmss.p |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
| 3 |
|
fveq2 |
⊢ ( 𝑑 = 𝐷 → ( pmSgn ‘ 𝑑 ) = ( pmSgn ‘ 𝐷 ) ) |
| 4 |
3
|
cnveqd |
⊢ ( 𝑑 = 𝐷 → ◡ ( pmSgn ‘ 𝑑 ) = ◡ ( pmSgn ‘ 𝐷 ) ) |
| 5 |
4
|
imaeq1d |
⊢ ( 𝑑 = 𝐷 → ( ◡ ( pmSgn ‘ 𝑑 ) “ { 1 } ) = ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ) |
| 6 |
|
df-evpm |
⊢ pmEven = ( 𝑑 ∈ V ↦ ( ◡ ( pmSgn ‘ 𝑑 ) “ { 1 } ) ) |
| 7 |
|
fvex |
⊢ ( pmSgn ‘ 𝐷 ) ∈ V |
| 8 |
7
|
cnvex |
⊢ ◡ ( pmSgn ‘ 𝐷 ) ∈ V |
| 9 |
8
|
imaex |
⊢ ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ∈ V |
| 10 |
5 6 9
|
fvmpt |
⊢ ( 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) = ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ) |
| 11 |
|
cnvimass |
⊢ ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ⊆ dom ( pmSgn ‘ 𝐷 ) |
| 12 |
|
eqid |
⊢ ( pmSgn ‘ 𝐷 ) = ( pmSgn ‘ 𝐷 ) |
| 13 |
|
eqid |
⊢ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) = ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) |
| 14 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
| 15 |
1 12 13 14
|
psgnghm |
⊢ ( 𝐷 ∈ V → ( pmSgn ‘ 𝐷 ) ∈ ( ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) ) = ( Base ‘ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
| 18 |
16 17
|
ghmf |
⊢ ( ( pmSgn ‘ 𝐷 ) ∈ ( ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → ( pmSgn ‘ 𝐷 ) : ( Base ‘ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 19 |
|
fdm |
⊢ ( ( pmSgn ‘ 𝐷 ) : ( Base ‘ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → dom ( pmSgn ‘ 𝐷 ) = ( Base ‘ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) ) ) |
| 20 |
15 18 19
|
3syl |
⊢ ( 𝐷 ∈ V → dom ( pmSgn ‘ 𝐷 ) = ( Base ‘ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) ) ) |
| 21 |
13 2
|
ressbasss |
⊢ ( Base ‘ ( 𝑆 ↾s dom ( pmSgn ‘ 𝐷 ) ) ) ⊆ 𝑃 |
| 22 |
20 21
|
eqsstrdi |
⊢ ( 𝐷 ∈ V → dom ( pmSgn ‘ 𝐷 ) ⊆ 𝑃 ) |
| 23 |
11 22
|
sstrid |
⊢ ( 𝐷 ∈ V → ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ⊆ 𝑃 ) |
| 24 |
10 23
|
eqsstrd |
⊢ ( 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) ⊆ 𝑃 ) |
| 25 |
|
fvprc |
⊢ ( ¬ 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) = ∅ ) |
| 26 |
|
0ss |
⊢ ∅ ⊆ 𝑃 |
| 27 |
25 26
|
eqsstrdi |
⊢ ( ¬ 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) ⊆ 𝑃 ) |
| 28 |
24 27
|
pm2.61i |
⊢ ( pmEven ‘ 𝐷 ) ⊆ 𝑃 |