Metamath Proof Explorer


Theorem psgnprfval

Description: The permutation sign function for a pair. (Contributed by AV, 10-Dec-2018)

Ref Expression
Hypotheses psgnprfval.0 D=12
psgnprfval.g G=SymGrpD
psgnprfval.b B=BaseG
psgnprfval.t T=ranpmTrspD
psgnprfval.n N=pmSgnD
Assertion psgnprfval XBNX=ιs|wWordTX=Gws=1w

Proof

Step Hyp Ref Expression
1 psgnprfval.0 D=12
2 psgnprfval.g G=SymGrpD
3 psgnprfval.b B=BaseG
4 psgnprfval.t T=ranpmTrspD
5 psgnprfval.n N=pmSgnD
6 id XBXB
7 elpri X11221221X=1122X=1221
8 prfi 1122Fin
9 eleq1 X=1122XFin1122Fin
10 8 9 mpbiri X=1122XFin
11 prfi 1221Fin
12 eleq1 X=1221XFin1221Fin
13 11 12 mpbiri X=1221XFin
14 10 13 jaoi X=1122X=1221XFin
15 diffi XFinXIFin
16 14 15 syl X=1122X=1221XIFin
17 dmfi XIFindomXIFin
18 7 16 17 3syl X11221221domXIFin
19 1ex 1V
20 2nn 2
21 2 3 1 symg2bas 1V2B=11221221
22 19 20 21 mp2an B=11221221
23 18 22 eleq2s XBdomXIFin
24 2 5 3 psgneldm XdomNXBdomXIFin
25 6 23 24 sylanbrc XBXdomN
26 2 4 5 psgnval XdomNNX=ιs|wWordTX=Gws=1w
27 25 26 syl XBNX=ιs|wWordTX=Gws=1w
28 6 27 syl XBNX=ιs|wWordTX=Gws=1w