Metamath Proof Explorer


Theorem psr0cl

Description: The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s S=ImPwSerR
psrgrp.i φIV
psrgrp.r φRGrp
psr0cl.d D=f0I|f-1Fin
psr0cl.o 0˙=0R
psr0cl.b B=BaseS
Assertion psr0cl φD×0˙B

Proof

Step Hyp Ref Expression
1 psrgrp.s S=ImPwSerR
2 psrgrp.i φIV
3 psrgrp.r φRGrp
4 psr0cl.d D=f0I|f-1Fin
5 psr0cl.o 0˙=0R
6 psr0cl.b B=BaseS
7 eqid BaseR=BaseR
8 7 5 grpidcl RGrp0˙BaseR
9 fconst6g 0˙BaseRD×0˙:DBaseR
10 3 8 9 3syl φD×0˙:DBaseR
11 fvex BaseRV
12 ovex 0IV
13 4 12 rabex2 DV
14 11 13 elmap D×0˙BaseRDD×0˙:DBaseR
15 10 14 sylibr φD×0˙BaseRD
16 1 7 4 6 2 psrbas φB=BaseRD
17 15 16 eleqtrrd φD×0˙B