Metamath Proof Explorer


Theorem psrbag0

Description: The empty bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015)

Ref Expression
Hypothesis psrbag0.d D=f0I|f-1Fin
Assertion psrbag0 IVI×0D

Proof

Step Hyp Ref Expression
1 psrbag0.d D=f0I|f-1Fin
2 0nn0 00
3 2 fconst6 I×0:I0
4 c0ex 0V
5 4 fconst I×0:I0
6 incom 0=0
7 0nnn ¬0
8 disjsn 0=¬0
9 7 8 mpbir 0=
10 6 9 eqtri 0=
11 fimacnvdisj I×0:I00=I×0-1=
12 5 10 11 mp2an I×0-1=
13 0fin Fin
14 12 13 eqeltri I×0-1Fin
15 3 14 pm3.2i I×0:I0I×0-1Fin
16 1 psrbag IVI×0DI×0:I0I×0-1Fin
17 15 16 mpbiri IVI×0D