Metamath Proof Explorer


Theorem psrbagsn

Description: A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015)

Ref Expression
Hypothesis psrbag0.d D = f 0 I | f -1 Fin
Assertion psrbagsn I V x I if x = K 1 0 D

Proof

Step Hyp Ref Expression
1 psrbag0.d D = f 0 I | f -1 Fin
2 1nn0 1 0
3 0nn0 0 0
4 2 3 ifcli if x = K 1 0 0
5 4 a1i x I if x = K 1 0 0
6 5 fmpttd x I if x = K 1 0 : I 0
7 6 mptru x I if x = K 1 0 : I 0
8 eqid x I if x = K 1 0 = x I if x = K 1 0
9 8 mptpreima x I if x = K 1 0 -1 = x I | if x = K 1 0
10 snfi K Fin
11 inss1 x | x = K I x | x = K
12 dfrab2 x I | x = K = x | x = K I
13 df-sn K = x | x = K
14 11 12 13 3sstr4i x I | x = K K
15 ssfi K Fin x I | x = K K x I | x = K Fin
16 10 14 15 mp2an x I | x = K Fin
17 0nnn ¬ 0
18 iffalse ¬ x = K if x = K 1 0 = 0
19 18 eleq1d ¬ x = K if x = K 1 0 0
20 17 19 mtbiri ¬ x = K ¬ if x = K 1 0
21 20 con4i if x = K 1 0 x = K
22 21 a1i x I if x = K 1 0 x = K
23 22 ss2rabi x I | if x = K 1 0 x I | x = K
24 ssfi x I | x = K Fin x I | if x = K 1 0 x I | x = K x I | if x = K 1 0 Fin
25 16 23 24 mp2an x I | if x = K 1 0 Fin
26 9 25 eqeltri x I if x = K 1 0 -1 Fin
27 7 26 pm3.2i x I if x = K 1 0 : I 0 x I if x = K 1 0 -1 Fin
28 1 psrbag I V x I if x = K 1 0 D x I if x = K 1 0 : I 0 x I if x = K 1 0 -1 Fin
29 27 28 mpbiri I V x I if x = K 1 0 D