Metamath Proof Explorer


Theorem psrbaglecl

Description: The set of finite bags is downward-closed. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024)

Ref Expression
Hypothesis psrbag.d D=f0I|f-1Fin
Assertion psrbaglecl FDG:I0GfFGD

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 simp2 FDG:I0GfFG:I0
3 simp1 FDG:I0GfFFD
4 id FDFD
5 1 psrbagf FDF:I0
6 5 ffnd FDFFnI
7 4 6 fndmexd FDIV
8 7 3ad2ant1 FDG:I0GfFIV
9 1 psrbag IVFDF:I0F-1Fin
10 8 9 syl FDG:I0GfFFDF:I0F-1Fin
11 3 10 mpbid FDG:I0GfFF:I0F-1Fin
12 11 simprd FDG:I0GfFF-1Fin
13 1 psrbaglesupp FDG:I0GfFG-1F-1
14 12 13 ssfid FDG:I0GfFG-1Fin
15 1 psrbag IVGDG:I0G-1Fin
16 8 15 syl FDG:I0GfFGDG:I0G-1Fin
17 2 14 16 mpbir2and FDG:I0GfFGD