Metamath Proof Explorer


Theorem psrgrp

Description: The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014) (Proof shortened by SN, 7-Feb-2025)

Ref Expression
Hypotheses psrgrp.s S=ImPwSerR
psrgrp.i φIV
psrgrp.r φRGrp
Assertion psrgrp φSGrp

Proof

Step Hyp Ref Expression
1 psrgrp.s S=ImPwSerR
2 psrgrp.i φIV
3 psrgrp.r φRGrp
4 ovex 0IV
5 4 rabex f0I|f-1FinV
6 eqid R𝑠f0I|f-1Fin=R𝑠f0I|f-1Fin
7 6 pwsgrp RGrpf0I|f-1FinVR𝑠f0I|f-1FinGrp
8 3 5 7 sylancl φR𝑠f0I|f-1FinGrp
9 eqid BaseR=BaseR
10 6 9 pwsbas RGrpf0I|f-1FinVBaseRf0I|f-1Fin=BaseR𝑠f0I|f-1Fin
11 3 5 10 sylancl φBaseRf0I|f-1Fin=BaseR𝑠f0I|f-1Fin
12 eqid f0I|f-1Fin=f0I|f-1Fin
13 eqid BaseS=BaseS
14 1 9 12 13 2 psrbas φBaseS=BaseRf0I|f-1Fin
15 14 eqcomd φBaseRf0I|f-1Fin=BaseS
16 eqid BaseR𝑠f0I|f-1Fin=BaseR𝑠f0I|f-1Fin
17 3 adantr φxBaseRf0I|f-1FinyBaseRf0I|f-1FinRGrp
18 5 a1i φxBaseRf0I|f-1FinyBaseRf0I|f-1Finf0I|f-1FinV
19 11 eleq2d φxBaseRf0I|f-1FinxBaseR𝑠f0I|f-1Fin
20 19 biimpa φxBaseRf0I|f-1FinxBaseR𝑠f0I|f-1Fin
21 20 adantrr φxBaseRf0I|f-1FinyBaseRf0I|f-1FinxBaseR𝑠f0I|f-1Fin
22 11 eleq2d φyBaseRf0I|f-1FinyBaseR𝑠f0I|f-1Fin
23 22 biimpa φyBaseRf0I|f-1FinyBaseR𝑠f0I|f-1Fin
24 23 adantrl φxBaseRf0I|f-1FinyBaseRf0I|f-1FinyBaseR𝑠f0I|f-1Fin
25 eqid +R=+R
26 eqid +R𝑠f0I|f-1Fin=+R𝑠f0I|f-1Fin
27 6 16 17 18 21 24 25 26 pwsplusgval φxBaseRf0I|f-1FinyBaseRf0I|f-1Finx+R𝑠f0I|f-1Finy=x+Rfy
28 eqid +S=+S
29 14 eleq2d φxBaseSxBaseRf0I|f-1Fin
30 29 biimpar φxBaseRf0I|f-1FinxBaseS
31 30 adantrr φxBaseRf0I|f-1FinyBaseRf0I|f-1FinxBaseS
32 14 eleq2d φyBaseSyBaseRf0I|f-1Fin
33 32 biimpar φyBaseRf0I|f-1FinyBaseS
34 33 adantrl φxBaseRf0I|f-1FinyBaseRf0I|f-1FinyBaseS
35 1 13 25 28 31 34 psradd φxBaseRf0I|f-1FinyBaseRf0I|f-1Finx+Sy=x+Rfy
36 27 35 eqtr4d φxBaseRf0I|f-1FinyBaseRf0I|f-1Finx+R𝑠f0I|f-1Finy=x+Sy
37 11 15 36 grppropd φR𝑠f0I|f-1FinGrpSGrp
38 8 37 mpbid φSGrp