Description: The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014) (Proof shortened by SN, 7-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | psrgrp.s | |
|
psrgrp.i | |
||
psrgrp.r | |
||
Assertion | psrgrp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrgrp.s | |
|
2 | psrgrp.i | |
|
3 | psrgrp.r | |
|
4 | ovex | |
|
5 | 4 | rabex | |
6 | eqid | |
|
7 | 6 | pwsgrp | |
8 | 3 5 7 | sylancl | |
9 | eqid | |
|
10 | 6 9 | pwsbas | |
11 | 3 5 10 | sylancl | |
12 | eqid | |
|
13 | eqid | |
|
14 | 1 9 12 13 2 | psrbas | |
15 | 14 | eqcomd | |
16 | eqid | |
|
17 | 3 | adantr | |
18 | 5 | a1i | |
19 | 11 | eleq2d | |
20 | 19 | biimpa | |
21 | 20 | adantrr | |
22 | 11 | eleq2d | |
23 | 22 | biimpa | |
24 | 23 | adantrl | |
25 | eqid | |
|
26 | eqid | |
|
27 | 6 16 17 18 21 24 25 26 | pwsplusgval | |
28 | eqid | |
|
29 | 14 | eleq2d | |
30 | 29 | biimpar | |
31 | 30 | adantrr | |
32 | 14 | eleq2d | |
33 | 32 | biimpar | |
34 | 33 | adantrl | |
35 | 1 13 25 28 31 34 | psradd | |
36 | 27 35 | eqtr4d | |
37 | 11 15 36 | grppropd | |
38 | 8 37 | mpbid | |