Metamath Proof Explorer


Theorem psrsca

Description: The scalar field of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses psrsca.s S=ImPwSerR
psrsca.i φIV
psrsca.r φRW
Assertion psrsca φR=ScalarS

Proof

Step Hyp Ref Expression
1 psrsca.s S=ImPwSerR
2 psrsca.i φIV
3 psrsca.r φRW
4 psrvalstr BasendxBaseS+ndx+SndxSScalarndxRndxxBaseR,fBaseSh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenRStruct19
5 scaid Scalar=SlotScalarndx
6 snsstp1 ScalarndxRScalarndxRndxxBaseR,fBaseSh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenR
7 ssun2 ScalarndxRndxxBaseR,fBaseSh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenRBasendxBaseS+ndx+SndxSScalarndxRndxxBaseR,fBaseSh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenR
8 6 7 sstri ScalarndxRBasendxBaseS+ndx+SndxSScalarndxRndxxBaseR,fBaseSh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenR
9 4 5 8 strfv RWR=ScalarBasendxBaseS+ndx+SndxSScalarndxRndxxBaseR,fBaseSh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenR
10 3 9 syl φR=ScalarBasendxBaseS+ndx+SndxSScalarndxRndxxBaseR,fBaseSh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenR
11 eqid BaseR=BaseR
12 eqid +R=+R
13 eqid R=R
14 eqid TopOpenR=TopOpenR
15 eqid h0I|h-1Fin=h0I|h-1Fin
16 eqid BaseS=BaseS
17 1 11 15 16 2 psrbas φBaseS=BaseRh0I|h-1Fin
18 eqid +S=+S
19 1 16 12 18 psrplusg +S=f+RBaseS×BaseS
20 eqid S=S
21 1 16 13 20 15 psrmulr S=fBaseS,zBaseSwh0I|h-1FinRxyh0I|h-1Fin|yfwfxRzwfx
22 eqid xBaseR,fBaseSh0I|h-1Fin×xRff=xBaseR,fBaseSh0I|h-1Fin×xRff
23 eqidd φ𝑡h0I|h-1Fin×TopOpenR=𝑡h0I|h-1Fin×TopOpenR
24 1 11 12 13 14 15 17 19 21 22 23 2 3 psrval φS=BasendxBaseS+ndx+SndxSScalarndxRndxxBaseR,fBaseSh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenR
25 24 fveq2d φScalarS=ScalarBasendxBaseS+ndx+SndxSScalarndxRndxxBaseR,fBaseSh0I|h-1Fin×xRffTopSetndx𝑡h0I|h-1Fin×TopOpenR
26 10 25 eqtr4d φR=ScalarS