Metamath Proof Explorer


Theorem psrvsca

Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses psrvsca.s S=ImPwSerR
psrvsca.n ˙=S
psrvsca.k K=BaseR
psrvsca.b B=BaseS
psrvsca.m ·˙=R
psrvsca.d D=h0I|h-1Fin
psrvsca.x φXK
psrvsca.y φFB
Assertion psrvsca φX˙F=D×X·˙fF

Proof

Step Hyp Ref Expression
1 psrvsca.s S=ImPwSerR
2 psrvsca.n ˙=S
3 psrvsca.k K=BaseR
4 psrvsca.b B=BaseS
5 psrvsca.m ·˙=R
6 psrvsca.d D=h0I|h-1Fin
7 psrvsca.x φXK
8 psrvsca.y φFB
9 sneq x=Xx=X
10 9 xpeq2d x=XD×x=D×X
11 10 oveq1d x=XD×x·˙ff=D×X·˙ff
12 oveq2 f=FD×X·˙ff=D×X·˙fF
13 1 2 3 4 5 6 psrvscafval ˙=xK,fBD×x·˙ff
14 ovex D×X·˙fFV
15 11 12 13 14 ovmpo XKFBX˙F=D×X·˙fF
16 7 8 15 syl2anc φX˙F=D×X·˙fF