Metamath Proof Explorer


Theorem pwsal

Description: The power set of a given set is a sigma-algebra (the so called discrete sigma-algebra). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion pwsal XV𝒫XSAlg

Proof

Step Hyp Ref Expression
1 0elpw 𝒫X
2 1 a1i XV𝒫X
3 unipw 𝒫X=X
4 3 difeq1i 𝒫Xy=Xy
5 4 a1i XV𝒫Xy=Xy
6 difssd XVXyX
7 difexg XVXyV
8 elpwg XyVXy𝒫XXyX
9 7 8 syl XVXy𝒫XXyX
10 6 9 mpbird XVXy𝒫X
11 5 10 eqeltrd XV𝒫Xy𝒫X
12 11 adantr XVy𝒫X𝒫Xy𝒫X
13 12 ralrimiva XVy𝒫X𝒫Xy𝒫X
14 elpwi y𝒫𝒫Xy𝒫X
15 14 unissd y𝒫𝒫Xy𝒫X
16 15 3 sseqtrdi y𝒫𝒫XyX
17 vuniex yV
18 17 a1i y𝒫𝒫XyV
19 elpwg yVy𝒫XyX
20 18 19 syl y𝒫𝒫Xy𝒫XyX
21 16 20 mpbird y𝒫𝒫Xy𝒫X
22 21 adantl XVy𝒫𝒫Xy𝒫X
23 22 a1d XVy𝒫𝒫Xyωy𝒫X
24 23 ralrimiva XVy𝒫𝒫Xyωy𝒫X
25 2 13 24 3jca XV𝒫Xy𝒫X𝒫Xy𝒫Xy𝒫𝒫Xyωy𝒫X
26 pwexg XV𝒫XV
27 issal 𝒫XV𝒫XSAlg𝒫Xy𝒫X𝒫Xy𝒫Xy𝒫𝒫Xyωy𝒫X
28 26 27 syl XV𝒫XSAlg𝒫Xy𝒫X𝒫Xy𝒫Xy𝒫𝒫Xyωy𝒫X
29 25 28 mpbird XV𝒫XSAlg