Metamath Proof Explorer


Theorem pwsdiagghm

Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwsdiagghm.y Y=R𝑠I
pwsdiagghm.b B=BaseR
pwsdiagghm.f F=xBI×x
Assertion pwsdiagghm RGrpIWFRGrpHomY

Proof

Step Hyp Ref Expression
1 pwsdiagghm.y Y=R𝑠I
2 pwsdiagghm.b B=BaseR
3 pwsdiagghm.f F=xBI×x
4 grpmnd RGrpRMnd
5 1 2 3 pwsdiagmhm RMndIWFRMndHomY
6 4 5 sylan RGrpIWFRMndHomY
7 1 pwsgrp RGrpIWYGrp
8 ghmmhmb RGrpYGrpRGrpHomY=RMndHomY
9 7 8 syldan RGrpIWRGrpHomY=RMndHomY
10 6 9 eleqtrrd RGrpIWFRGrpHomY