Metamath Proof Explorer


Theorem pwsiga

Description: Any power set forms a sigma-algebra. (Contributed by Thierry Arnoux, 13-Sep-2016) (Revised by Thierry Arnoux, 24-Oct-2016)

Ref Expression
Assertion pwsiga O V 𝒫 O sigAlgebra O

Proof

Step Hyp Ref Expression
1 ssidd O V 𝒫 O 𝒫 O
2 pwidg O V O 𝒫 O
3 difss O x O
4 elpw2g O V O x 𝒫 O O x O
5 3 4 mpbiri O V O x 𝒫 O
6 5 a1d O V x 𝒫 O O x 𝒫 O
7 6 ralrimiv O V x 𝒫 O O x 𝒫 O
8 sspwuni x 𝒫 O x O
9 vuniex x V
10 9 elpw x 𝒫 O x O
11 8 10 bitr4i x 𝒫 O x 𝒫 O
12 11 biimpi x 𝒫 O x 𝒫 O
13 12 a1d x 𝒫 O x ω x 𝒫 O
14 elpwi x 𝒫 𝒫 O x 𝒫 O
15 14 imim1i x 𝒫 O x ω x 𝒫 O x 𝒫 𝒫 O x ω x 𝒫 O
16 13 15 mp1i O V x 𝒫 𝒫 O x ω x 𝒫 O
17 16 ralrimiv O V x 𝒫 𝒫 O x ω x 𝒫 O
18 2 7 17 3jca O V O 𝒫 O x 𝒫 O O x 𝒫 O x 𝒫 𝒫 O x ω x 𝒫 O
19 pwexg O V 𝒫 O V
20 issiga 𝒫 O V 𝒫 O sigAlgebra O 𝒫 O 𝒫 O O 𝒫 O x 𝒫 O O x 𝒫 O x 𝒫 𝒫 O x ω x 𝒫 O
21 19 20 syl O V 𝒫 O sigAlgebra O 𝒫 O 𝒫 O O 𝒫 O x 𝒫 O O x 𝒫 O x 𝒫 𝒫 O x ω x 𝒫 O
22 1 18 21 mpbir2and O V 𝒫 O sigAlgebra O