Description: Any power set forms a sigma-algebra. (Contributed by Thierry Arnoux, 13-Sep-2016) (Revised by Thierry Arnoux, 24-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | pwsiga | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd | |
|
2 | pwidg | |
|
3 | difss | |
|
4 | elpw2g | |
|
5 | 3 4 | mpbiri | |
6 | 5 | a1d | |
7 | 6 | ralrimiv | |
8 | sspwuni | |
|
9 | vuniex | |
|
10 | 9 | elpw | |
11 | 8 10 | bitr4i | |
12 | 11 | biimpi | |
13 | 12 | a1d | |
14 | elpwi | |
|
15 | 14 | imim1i | |
16 | 13 15 | mp1i | |
17 | 16 | ralrimiv | |
18 | 2 7 17 | 3jca | |
19 | pwexg | |
|
20 | issiga | |
|
21 | 19 20 | syl | |
22 | 1 18 21 | mpbir2and | |