Metamath Proof Explorer


Theorem pwsiga

Description: Any power set forms a sigma-algebra. (Contributed by Thierry Arnoux, 13-Sep-2016) (Revised by Thierry Arnoux, 24-Oct-2016)

Ref Expression
Assertion pwsiga OV𝒫OsigAlgebraO

Proof

Step Hyp Ref Expression
1 ssidd OV𝒫O𝒫O
2 pwidg OVO𝒫O
3 difss OxO
4 elpw2g OVOx𝒫OOxO
5 3 4 mpbiri OVOx𝒫O
6 5 a1d OVx𝒫OOx𝒫O
7 6 ralrimiv OVx𝒫OOx𝒫O
8 sspwuni x𝒫OxO
9 vuniex xV
10 9 elpw x𝒫OxO
11 8 10 bitr4i x𝒫Ox𝒫O
12 11 biimpi x𝒫Ox𝒫O
13 12 a1d x𝒫Oxωx𝒫O
14 elpwi x𝒫𝒫Ox𝒫O
15 14 imim1i x𝒫Oxωx𝒫Ox𝒫𝒫Oxωx𝒫O
16 13 15 mp1i OVx𝒫𝒫Oxωx𝒫O
17 16 ralrimiv OVx𝒫𝒫Oxωx𝒫O
18 2 7 17 3jca OVO𝒫Ox𝒫OOx𝒫Ox𝒫𝒫Oxωx𝒫O
19 pwexg OV𝒫OV
20 issiga 𝒫OV𝒫OsigAlgebraO𝒫O𝒫OO𝒫Ox𝒫OOx𝒫Ox𝒫𝒫Oxωx𝒫O
21 19 20 syl OV𝒫OsigAlgebraO𝒫O𝒫OO𝒫Ox𝒫OOx𝒫Ox𝒫𝒫Oxωx𝒫O
22 1 18 21 mpbir2and OV𝒫OsigAlgebraO