Description: Finite powers of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pwslnm.y | |
|
Assertion | pwslnm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwslnm.y | |
|
2 | oveq2 | |
|
3 | 2 | eleq1d | |
4 | 3 | imbi2d | |
5 | oveq2 | |
|
6 | 5 | eleq1d | |
7 | 6 | imbi2d | |
8 | oveq2 | |
|
9 | 8 | eleq1d | |
10 | 9 | imbi2d | |
11 | oveq2 | |
|
12 | 11 | eleq1d | |
13 | 12 | imbi2d | |
14 | lnmlmod | |
|
15 | eqid | |
|
16 | 15 | pwslnmlem0 | |
17 | 14 16 | syl | |
18 | vex | |
|
19 | vsnex | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | 14 | ad2antrl | |
24 | disjsn | |
|
25 | 24 | biimpri | |
26 | 25 | ad2antlr | |
27 | simprr | |
|
28 | 21 | pwslnmlem1 | |
29 | 28 | ad2antrl | |
30 | 18 19 20 21 22 23 26 27 29 | pwslnmlem2 | |
31 | 30 | exp32 | |
32 | 31 | a2d | |
33 | 4 7 10 13 17 32 | findcard2s | |
34 | 33 | impcom | |
35 | 1 34 | eqeltrid | |