| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwssplit1.y |  | 
						
							| 2 |  | pwssplit1.z |  | 
						
							| 3 |  | pwssplit1.b |  | 
						
							| 4 |  | pwssplit1.c |  | 
						
							| 5 |  | pwssplit1.f |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | simp1 |  | 
						
							| 9 |  | simp2 |  | 
						
							| 10 | 1 | pwsgrp |  | 
						
							| 11 | 8 9 10 | syl2anc |  | 
						
							| 12 |  | simp3 |  | 
						
							| 13 | 9 12 | ssexd |  | 
						
							| 14 | 2 | pwsgrp |  | 
						
							| 15 | 8 13 14 | syl2anc |  | 
						
							| 16 | 1 2 3 4 5 | pwssplit0 |  | 
						
							| 17 |  | offres |  | 
						
							| 18 | 17 | adantl |  | 
						
							| 19 | 8 | adantr |  | 
						
							| 20 |  | simpl2 |  | 
						
							| 21 |  | simprl |  | 
						
							| 22 |  | simprr |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 1 3 19 20 21 22 23 6 | pwsplusgval |  | 
						
							| 25 | 24 | reseq1d |  | 
						
							| 26 | 5 | fvtresfn |  | 
						
							| 27 | 5 | fvtresfn |  | 
						
							| 28 | 26 27 | oveqan12d |  | 
						
							| 29 | 28 | adantl |  | 
						
							| 30 | 18 25 29 | 3eqtr4d |  | 
						
							| 31 | 3 6 | grpcl |  | 
						
							| 32 | 31 | 3expb |  | 
						
							| 33 | 11 32 | sylan |  | 
						
							| 34 | 5 | fvtresfn |  | 
						
							| 35 | 33 34 | syl |  | 
						
							| 36 | 13 | adantr |  | 
						
							| 37 | 16 | ffvelcdmda |  | 
						
							| 38 | 37 | adantrr |  | 
						
							| 39 | 16 | ffvelcdmda |  | 
						
							| 40 | 39 | adantrl |  | 
						
							| 41 | 2 4 19 36 38 40 23 7 | pwsplusgval |  | 
						
							| 42 | 30 35 41 | 3eqtr4d |  | 
						
							| 43 | 3 4 6 7 11 15 16 42 | isghmd |  |