| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwssplit1.y |
|
| 2 |
|
pwssplit1.z |
|
| 3 |
|
pwssplit1.b |
|
| 4 |
|
pwssplit1.c |
|
| 5 |
|
pwssplit1.f |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
simp1 |
|
| 9 |
|
simp2 |
|
| 10 |
1
|
pwsgrp |
|
| 11 |
8 9 10
|
syl2anc |
|
| 12 |
|
simp3 |
|
| 13 |
9 12
|
ssexd |
|
| 14 |
2
|
pwsgrp |
|
| 15 |
8 13 14
|
syl2anc |
|
| 16 |
1 2 3 4 5
|
pwssplit0 |
|
| 17 |
|
offres |
|
| 18 |
17
|
adantl |
|
| 19 |
8
|
adantr |
|
| 20 |
|
simpl2 |
|
| 21 |
|
simprl |
|
| 22 |
|
simprr |
|
| 23 |
|
eqid |
|
| 24 |
1 3 19 20 21 22 23 6
|
pwsplusgval |
|
| 25 |
24
|
reseq1d |
|
| 26 |
5
|
fvtresfn |
|
| 27 |
5
|
fvtresfn |
|
| 28 |
26 27
|
oveqan12d |
|
| 29 |
28
|
adantl |
|
| 30 |
18 25 29
|
3eqtr4d |
|
| 31 |
3 6
|
grpcl |
|
| 32 |
31
|
3expb |
|
| 33 |
11 32
|
sylan |
|
| 34 |
5
|
fvtresfn |
|
| 35 |
33 34
|
syl |
|
| 36 |
13
|
adantr |
|
| 37 |
16
|
ffvelcdmda |
|
| 38 |
37
|
adantrr |
|
| 39 |
16
|
ffvelcdmda |
|
| 40 |
39
|
adantrl |
|
| 41 |
2 4 19 36 38 40 23 7
|
pwsplusgval |
|
| 42 |
30 35 41
|
3eqtr4d |
|
| 43 |
3 4 6 7 11 15 16 42
|
isghmd |
|