Metamath Proof Explorer


Theorem pwssplit2

Description: Splitting for structure powers, part 2: restriction is a group homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwssplit1.y Y=W𝑠U
pwssplit1.z Z=W𝑠V
pwssplit1.b B=BaseY
pwssplit1.c C=BaseZ
pwssplit1.f F=xBxV
Assertion pwssplit2 WGrpUXVUFYGrpHomZ

Proof

Step Hyp Ref Expression
1 pwssplit1.y Y=W𝑠U
2 pwssplit1.z Z=W𝑠V
3 pwssplit1.b B=BaseY
4 pwssplit1.c C=BaseZ
5 pwssplit1.f F=xBxV
6 eqid +Y=+Y
7 eqid +Z=+Z
8 simp1 WGrpUXVUWGrp
9 simp2 WGrpUXVUUX
10 1 pwsgrp WGrpUXYGrp
11 8 9 10 syl2anc WGrpUXVUYGrp
12 simp3 WGrpUXVUVU
13 9 12 ssexd WGrpUXVUVV
14 2 pwsgrp WGrpVVZGrp
15 8 13 14 syl2anc WGrpUXVUZGrp
16 1 2 3 4 5 pwssplit0 WGrpUXVUF:BC
17 offres aBbBa+WfbV=aV+WfbV
18 17 adantl WGrpUXVUaBbBa+WfbV=aV+WfbV
19 8 adantr WGrpUXVUaBbBWGrp
20 simpl2 WGrpUXVUaBbBUX
21 simprl WGrpUXVUaBbBaB
22 simprr WGrpUXVUaBbBbB
23 eqid +W=+W
24 1 3 19 20 21 22 23 6 pwsplusgval WGrpUXVUaBbBa+Yb=a+Wfb
25 24 reseq1d WGrpUXVUaBbBa+YbV=a+WfbV
26 5 fvtresfn aBFa=aV
27 5 fvtresfn bBFb=bV
28 26 27 oveqan12d aBbBFa+WfFb=aV+WfbV
29 28 adantl WGrpUXVUaBbBFa+WfFb=aV+WfbV
30 18 25 29 3eqtr4d WGrpUXVUaBbBa+YbV=Fa+WfFb
31 3 6 grpcl YGrpaBbBa+YbB
32 31 3expb YGrpaBbBa+YbB
33 11 32 sylan WGrpUXVUaBbBa+YbB
34 5 fvtresfn a+YbBFa+Yb=a+YbV
35 33 34 syl WGrpUXVUaBbBFa+Yb=a+YbV
36 13 adantr WGrpUXVUaBbBVV
37 16 ffvelcdmda WGrpUXVUaBFaC
38 37 adantrr WGrpUXVUaBbBFaC
39 16 ffvelcdmda WGrpUXVUbBFbC
40 39 adantrl WGrpUXVUaBbBFbC
41 2 4 19 36 38 40 23 7 pwsplusgval WGrpUXVUaBbBFa+ZFb=Fa+WfFb
42 30 35 41 3eqtr4d WGrpUXVUaBbBFa+Yb=Fa+ZFb
43 3 4 6 7 11 15 16 42 isghmd WGrpUXVUFYGrpHomZ