Description: Splitting for structure powers, part 2: restriction is a group homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pwssplit1.y | |
|
pwssplit1.z | |
||
pwssplit1.b | |
||
pwssplit1.c | |
||
pwssplit1.f | |
||
Assertion | pwssplit2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwssplit1.y | |
|
2 | pwssplit1.z | |
|
3 | pwssplit1.b | |
|
4 | pwssplit1.c | |
|
5 | pwssplit1.f | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | simp1 | |
|
9 | simp2 | |
|
10 | 1 | pwsgrp | |
11 | 8 9 10 | syl2anc | |
12 | simp3 | |
|
13 | 9 12 | ssexd | |
14 | 2 | pwsgrp | |
15 | 8 13 14 | syl2anc | |
16 | 1 2 3 4 5 | pwssplit0 | |
17 | offres | |
|
18 | 17 | adantl | |
19 | 8 | adantr | |
20 | simpl2 | |
|
21 | simprl | |
|
22 | simprr | |
|
23 | eqid | |
|
24 | 1 3 19 20 21 22 23 6 | pwsplusgval | |
25 | 24 | reseq1d | |
26 | 5 | fvtresfn | |
27 | 5 | fvtresfn | |
28 | 26 27 | oveqan12d | |
29 | 28 | adantl | |
30 | 18 25 29 | 3eqtr4d | |
31 | 3 6 | grpcl | |
32 | 31 | 3expb | |
33 | 11 32 | sylan | |
34 | 5 | fvtresfn | |
35 | 33 34 | syl | |
36 | 13 | adantr | |
37 | 16 | ffvelcdmda | |
38 | 37 | adantrr | |
39 | 16 | ffvelcdmda | |
40 | 39 | adantrl | |
41 | 2 4 19 36 38 40 23 7 | pwsplusgval | |
42 | 30 35 41 | 3eqtr4d | |
43 | 3 4 6 7 11 15 16 42 | isghmd | |