Description: Lemma for pythagtrip . Show the relationship between M , N , and A . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pythagtriplem15.1 | |
|
pythagtriplem15.2 | |
||
Assertion | pythagtriplem15 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pythagtriplem15.1 | |
|
2 | pythagtriplem15.2 | |
|
3 | 1 | pythagtriplem12 | |
4 | 2 | pythagtriplem14 | |
5 | 3 4 | oveq12d | |
6 | simp3 | |
|
7 | simp1 | |
|
8 | 6 7 | nnaddcld | |
9 | 8 | nncnd | |
10 | 9 | 3ad2ant1 | |
11 | nnz | |
|
12 | 11 | 3ad2ant3 | |
13 | nnz | |
|
14 | 13 | 3ad2ant1 | |
15 | 12 14 | zsubcld | |
16 | 15 | zcnd | |
17 | 16 | 3ad2ant1 | |
18 | 2cnne0 | |
|
19 | divsubdir | |
|
20 | 18 19 | mp3an3 | |
21 | 10 17 20 | syl2anc | |
22 | 5 21 | eqtr4d | |
23 | nncn | |
|
24 | 23 | 3ad2ant3 | |
25 | 24 | 3ad2ant1 | |
26 | nncn | |
|
27 | 26 | 3ad2ant1 | |
28 | 27 | 3ad2ant1 | |
29 | 25 28 28 | pnncand | |
30 | 28 | 2timesd | |
31 | 29 30 | eqtr4d | |
32 | 31 | oveq1d | |
33 | 2cn | |
|
34 | 2ne0 | |
|
35 | divcan3 | |
|
36 | 33 34 35 | mp3an23 | |
37 | 28 36 | syl | |
38 | 22 32 37 | 3eqtrrd | |