Metamath Proof Explorer


Theorem pythagtriplem15

Description: Lemma for pythagtrip . Show the relationship between M , N , and A . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses pythagtriplem15.1 M=C+B+CB2
pythagtriplem15.2 N=C+BCB2
Assertion pythagtriplem15 ABCA2+B2=C2AgcdB=1¬2AA=M2N2

Proof

Step Hyp Ref Expression
1 pythagtriplem15.1 M=C+B+CB2
2 pythagtriplem15.2 N=C+BCB2
3 1 pythagtriplem12 ABCA2+B2=C2AgcdB=1¬2AM2=C+A2
4 2 pythagtriplem14 ABCA2+B2=C2AgcdB=1¬2AN2=CA2
5 3 4 oveq12d ABCA2+B2=C2AgcdB=1¬2AM2N2=C+A2CA2
6 simp3 ABCC
7 simp1 ABCA
8 6 7 nnaddcld ABCC+A
9 8 nncnd ABCC+A
10 9 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC+A
11 nnz CC
12 11 3ad2ant3 ABCC
13 nnz AA
14 13 3ad2ant1 ABCA
15 12 14 zsubcld ABCCA
16 15 zcnd ABCCA
17 16 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2ACA
18 2cnne0 220
19 divsubdir C+ACA220C+A-CA2=C+A2CA2
20 18 19 mp3an3 C+ACAC+A-CA2=C+A2CA2
21 10 17 20 syl2anc ABCA2+B2=C2AgcdB=1¬2AC+A-CA2=C+A2CA2
22 5 21 eqtr4d ABCA2+B2=C2AgcdB=1¬2AM2N2=C+A-CA2
23 nncn CC
24 23 3ad2ant3 ABCC
25 24 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC
26 nncn AA
27 26 3ad2ant1 ABCA
28 27 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AA
29 25 28 28 pnncand ABCA2+B2=C2AgcdB=1¬2AC+A-CA=A+A
30 28 2timesd ABCA2+B2=C2AgcdB=1¬2A2A=A+A
31 29 30 eqtr4d ABCA2+B2=C2AgcdB=1¬2AC+A-CA=2A
32 31 oveq1d ABCA2+B2=C2AgcdB=1¬2AC+A-CA2=2A2
33 2cn 2
34 2ne0 20
35 divcan3 A2202A2=A
36 33 34 35 mp3an23 A2A2=A
37 28 36 syl ABCA2+B2=C2AgcdB=1¬2A2A2=A
38 22 32 37 3eqtrrd ABCA2+B2=C2AgcdB=1¬2AA=M2N2