Metamath Proof Explorer


Theorem pzriprnglem3

Description: Lemma 3 for pzriprng : An element of I is an ordered pair. (Contributed by AV, 18-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R = ring × 𝑠 ring
pzriprng.i I = × 0
Assertion pzriprnglem3 X I x X = x 0

Proof

Step Hyp Ref Expression
1 pzriprng.r R = ring × 𝑠 ring
2 pzriprng.i I = × 0
3 2 eleq2i X I X × 0
4 elxp2 X × 0 x y 0 X = x y
5 0z 0
6 opeq2 y = 0 x y = x 0
7 6 eqeq2d y = 0 X = x y X = x 0
8 7 rexsng 0 y 0 X = x y X = x 0
9 5 8 ax-mp y 0 X = x y X = x 0
10 9 rexbii x y 0 X = x y x X = x 0
11 3 4 10 3bitri X I x X = x 0