Metamath Proof Explorer


Theorem qndenserrnopn

Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses qndenserrnopn.i φIFin
qndenserrnopn.j J=TopOpenmsup
qndenserrnopn.v φVJ
qndenserrnopn.n φV
Assertion qndenserrnopn φyIyV

Proof

Step Hyp Ref Expression
1 qndenserrnopn.i φIFin
2 qndenserrnopn.j J=TopOpenmsup
3 qndenserrnopn.v φVJ
4 qndenserrnopn.n φV
5 n0 VxxV
6 4 5 sylib φxxV
7 1 adantr φxVIFin
8 3 adantr φxVVJ
9 simpr φxVxV
10 eqid distmsup=distmsup
11 7 2 8 9 10 qndenserrnopnlem φxVyIyV
12 11 ex φxVyIyV
13 12 exlimdv φxxVyIyV
14 6 13 mpd φyIyV