Metamath Proof Explorer


Theorem qrngneg

Description: The additive inverse in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypothesis qrng.q Q=fld𝑠
Assertion qrngneg XinvgQX=X

Proof

Step Hyp Ref Expression
1 qrng.q Q=fld𝑠
2 qsubdrg SubRingfldfld𝑠DivRing
3 2 simpli SubRingfld
4 subrgsubg SubRingfldSubGrpfld
5 3 4 ax-mp SubGrpfld
6 eqid invgfld=invgfld
7 eqid invgQ=invgQ
8 1 6 7 subginv SubGrpfldXinvgfldX=invgQX
9 5 8 mpan XinvgfldX=invgQX
10 qcn XX
11 cnfldneg XinvgfldX=X
12 10 11 syl XinvgfldX=X
13 9 12 eqtr3d XinvgQX=X