Metamath Proof Explorer


Theorem qsxpid

Description: The quotient set of a cartesian product is trivial. (Contributed by Thierry Arnoux, 16-Jan-2024)

Ref Expression
Assertion qsxpid AA/A×A=A

Proof

Step Hyp Ref Expression
1 simpr xAy=xA×Ay=xA×A
2 ecxpid xAxA×A=A
3 2 adantr xAy=xA×AxA×A=A
4 1 3 eqtrd xAy=xA×Ay=A
5 4 rexlimiva xAy=xA×Ay=A
6 5 adantl AxAy=xA×Ay=A
7 n0 AxxA
8 7 biimpi AxxA
9 simpl y=AxAy=A
10 2 adantl y=AxAxA×A=A
11 9 10 eqtr4d y=AxAy=xA×A
12 11 ex y=AxAy=xA×A
13 12 ancld y=AxAxAy=xA×A
14 13 eximdv y=AxxAxxAy=xA×A
15 8 14 mpan9 Ay=AxxAy=xA×A
16 df-rex xAy=xA×AxxAy=xA×A
17 15 16 sylibr Ay=AxAy=xA×A
18 6 17 impbida AxAy=xA×Ay=A
19 vex yV
20 19 elqs yA/A×AxAy=xA×A
21 velsn yAy=A
22 18 20 21 3bitr4g AyA/A×AyA
23 22 eqrdv AA/A×A=A